

KULLANIM KILAVUZU

Önsöz

Kullanım

Bu kılavuz, Modüler UPS'nin kurulumu, kullanımı, çalıştırılması ve bakımı hakkında bilgiler içermektedir. Lütfen kurulumdan önce bu kılavuzu dikkatle okuyun.

Kullanıcılar

Teknik Destek Mühendisi Bakım Mühendisi

Not

Firmamız geniş bir yelpazede teknik destek ve hizmet sunmaktadır. Müşterilerimiz, destek için yerel ofisimizle veya müşteri hizmetleri merkezimizle iletişim kurabilir.

Kılavuz, ürün iyileştirme veya diğer nedenlerden dolayı düzensiz aralıklarla güncellenecektir. Aksi kararlaştırılmadıkça, bu kılavuz yalnızca kullanıcılar için rehber olarak kullanılır ve bu kılavuzda yer alan herhangi bir ifade veya bilgi, açık veya zımni hiçbir garanti vermez.

İçindekiler

Öns İçin	öz dekil	er	-	I
Güv	venlik	Önlemle	eri	V
I	Gen	el Bakış. Üri	ün Tanımı	9
	1.1	Sis	tem kavramsal seması	9
	1.3	Gü	c modülü kavramsal seması	9
	1.4	Cal	, , , , , , , , , , , , , , , , , , ,	
		, 1.4.1	, Normal Mod	10
		1.4.2	Akü Modu	10
		1.4.3	By-pass Modu	11
		1.4.4	Bakım Modu (Manuel By-pass)	11
		1.4.5	ECO Modu	12
		1.4.6	Otomatik Yeniden Başlatma Modu	12
		1.4.7	Frekans Konvertör Modu	12
	1.5	UP	S Yapısı	13
		1.5.1	UPS Yapılandırma Rasyonu	13
		1.5.2	UPS Yapısı	13
2	Kur	ulum	-	16
	2.1	Ye	r	16
		2.1.1	Kurulum Ortamı	16
		2.1.2	Saha Seçimi	16
		2.1.3	Ağırlık ve Boyutlar	16
	2.2	Na	kliyeden İndirme ve Ambalajdan Çıkarma	20
		2.2.1	Kabinin Hareket Ettirilmesi ve Ambalajdan Çıkarılması	20
	2.3	Ko	numlandırma	22
		2.3.1	Kabinin Konumlandırılması	22
	2.4	Ak	ü	24
	2.5	Ka	blo Giriși	24
	2.6	Gü	ç Kabloları	26
		2.6.1	Özellikler	26
		2.6.2	Güç Kablosu Terminallerinin Özellikleri	27
		2.6.3	Devre Kesici	
		2.6.4	Güç Kabloları Bağlantılarının Oluşturulması	
	2.7	Ko	ntrol ve İletişim Kabloları	
		2.7.1	Kuru Kontak Arabirimi	31
		2.7.2	İletişim Arabirimi	
3	Ope	ratör Koi	ntrolü ve Görüntüleme Paneli	
				İçindekiler

	3.1	UP	S Operatör Paneli	37
		3.1.1	LED Gösterge	37
		3.1.2	Kontrol ve Çalıştırma Tuşları	38
		3.1.3	LCD Dokunmatik Ekran	39
	3.2	An	a Menü	40
		3.2.1	Kabin	40
		3.2.2	Güç modülü	42
		3.2.3	Setting (Ayarlar)	44
		3.2.4	Günlük	46
		3.2.5	Operate (İşlem)	53
		3.2.6	Scope (Ölçek)	55
4	İşle	mler		56
	4.1	UP	S'nin Çalışma Başlangıcı	56
		4.1.1	Normal Modda Başlatma	56
		4.1.2	Akü İle Başlatma	57
	4.2	Çal	ışma Modları Arasında Geçiş Yapmaya İlişkin Prosedür	57
		4.2.1	UPS'yi Normal Moddan Akü Moduna Geçirme	57
		4.2.2	UPS'yi Normal Moddan By-pass Moduna Geçirme	57
		4.2.3	UPS'yi By-pass Modundan Normal Moda Geçirme	58
		4.2.4	UPS'yi Normal Moddan Bakım By-pass Moduna Geçirme	58
		4.2.5	UPS'yi Bakım By-pass Modundan Normal Moda Geçirme	59
	4.3	Ak	ü Kılavuzu	59
	4.4	EP	0	61
	4.5	Par	alel Çalışma Sisteminin Kurulumu	62
5	Bak			64
	5.1	On		64
	5.2	Gũ	ç Modulunun Bakımına Yönelik Rehber	64
	5.3	Mo	mitor Unitesi ve By-pass Unitesinin Bakimina Yonelik Rehber	64
		5.3.1	2 Yuvali Kabin İçin Monitör Unitesi ve By-pass Unitesinin Bakımı	64
		5.3.2	4 Yuvalı Kabın ve 6 Yuvalı Kabın İçin Monitör Unitesi ve By-pass Unite	esinin Bakımı
		5.3.3	10 Yuvali Kabin İçin Monitor Unitesi ve By-pass Unitesinin Bakımı	65
	5.4	Ak	u Ayarları	66
		5.4.1	Aku Turu Ayarı	66
		5.4.2	Aku Sayisi Ayari	66
		5.4.3	Akü Kapasıtesi Ayarı	67
		5.4.4	Tampon ve Hızlı Şarj Ayarı	67
		5.4.5	EOD Gerilim Ayari	67
		5.4.6	Şarj Akımı Yüzde Sınırı	67
		5.4.7	Akü Sıcaklığı Kompanzasyonu	68

		5.4.8	Hızlı Şarj Süre Sınırı	68
		5.4.9	Otomatik Hızlandırma (Boost) Periyodu	68
		5.4.10	Otomatik Bakım Deşarj Periyodu	68
		5.4.11	Akü ve Ortam Sıcaklığı Aşırı Artışına Yönelik Uyarılar	69
	5.5	Toz	Filtresi Değişimi (opsiyonel)	69
6	Ürü	n Özellikl	eri	70
	6.1	Geç	erli Standartlar	70
	6.2	Çev	resel Karakteristikler	70
	6.3	Mel	anik Karakteristikler	71
	6.4	Elek	triksel Karakteristikler	71
		6.4.1	Elektriksel Karakteristikler (Giriş Redresörü)	71
		6.4.2	Elektriksel Karakteristikler (Ara DC Link)	72
		6.4.3	Elektriksel Karakteristikler (İnvertör Çıkışı)	72
		6.4.4	Elektriksel Karakteristikler (By-pass Şebeke Girişi)	73
	6.5	Ver	imlilik	73
	6.6	Ekra	an ve Arabirim	73

Güvenlik Önlemleri

Bu kılavuz Modüler UPS'nin kurulumu ve çalıştırılması ile ilgili bilgiler içermektedir. Lütfen kurulumdan önce bu kılavuzu dikkatle okuyun.

Modüler UPS, üretici (veya acentesi) tarafından onaylanan mühendisler tarafından devreye alınana kadar çalıştırılamaz. Aksi takdirde, bu durum personel güvenliği riski, ekipman arızası ve garantinin geçersiz kılınmasıyla sonuçlanabilir.

Güvenlik Mesajı Tanımı

Tehlike: Bu gerekliliğin göz ardı edilmesi ciddi insan yaralanmaları ve hatta ölüme bile sebep olabilir.

Uyarı: Bu gerekliliğin göz ardı edilmesi insan yaralanmaları veya ekipman hasarına sebep olabilir.

Dikkat: Bu gerekliliğin göz ardı edilmesi ekipman hasarı, veri kaybı veya düşük performansa sebep olabilir.

Devreye Alma Mühendisi: Ekipmanı kuran veya çalıştıran mühendis, elektrik ve güvenlik konusunda iyi eğitimli olmalı ve ekipmanın çalıştırılması, hata ayıklanması ve bakımı hakkında bilgi sahibi olmalıdır.

İkaz Etiketi

İkaz etiketi insan yaralanması veya ekipman hasarı olasılığını gösterir ve tehlikeyi önleme konusunda uygun adımı önerir. Bu kılavuzda, aşağıdaki şekilde üç tür uyarı etiketi vardır.

Etiketler	Açıklama
Tehlike	Bu gerekliliğin göz ardı edilmesi ciddi insan yaralanmaları ve hatta ölüme bile sebep olabilir.
Uyan Uyan	Bu gerekliliğin göz ardı edilmesi insan yaralanmaları veya ekipman hasarına sebep olabilir.
Dikkat	Bu gerekliliğin göz ardı edilmesi ekipman hasarı, veri kaybı veya düşük performansa sebep olabilir.

Güvenlik Talimatı

Tehlike		Yalnızca devreye alma mühendisleri tarafından gerçekleştirilmelidir. Bu UPS yalnızca ticari ve endüstriyel uygulamalar için tasarlanmıştır ve yaşam destek cihazlarında veya sistemlerinde herhangi bir şekilde kullanım için tasarlanmamıştır.
Uyan Uyan	¢	Çalıştırmadan önce tüm uyarı etiketlerini dikkatle okuyun ve talimatları izleyin.
		Sistem çalışırken, yanıklardan kaçınmak için üzerinde bu etiketin bulunduğu yüzeye dokunmayın.
	\$	UPS içindeki ESD'ye duyarlı bileşenler bulunmaktadır, kullanımdan önce anti-ESD önlemi alınmalıdır.

Hareket Ettirme & Kurulum

^	\diamond	Ekipmanı ısı kaynaklarından veya hava çıkışlarından uzak tutun.
Tablika	\diamond	Yangın durumunda, yalnızca kuru toz söndürücü kullanın,
		herhangi bir sıvı söndürücü elektrik çarpmasına neden olabilir.
	\diamond	Herhangi bir hasar veya anormal parça bulunması
		durumunda sistemi çalıştırmayın.
	\diamond	UPS'nin ıslak malzeme veya ellerle teması elektrik
		çarpmasına yol açabilir.
	\diamond	UPS'yi taşımak ve kurmak için uygun tesisleri kullanın.
•		Yaralanmaları önleme konusunda koruyucu ayakkabılar,
		koruyucu giysiler ve diğer koruyucu tesisler gereklidir.
	\diamond	Konumlandırma sırasında UPS'yi şok veya titreşimden uzak tutun.
Dikkat	\diamond	UPS'yi uygun bir ortama kurun, bölüm 3.3'te bu konu ile
		ilgili daha fazla ayrıntı mevcut.

Hata Ayıklama & Çalıştırma

		,
	\diamond	Güç kablolarının bağlantısından önce topraklama kablosunun
		bağlantısının iyi sağlandığından emin olun, topraklama
		kablosu ve nötr kablo yerel ve ulusal yasaları uygulamalarına
		uygun olmalıdır.
	\diamond	Kabloları hareket ettirmeden veya yeniden takmadan önce, tüm
A		giriş güç kaynaklarını kestiğinizden emin olun ve dahili deşarj
Toplika		için en az 10 dakika bekleyin. Terminallerdeki voltajı ölçmek
		için bir multimetre kullanın ve çalıştırmadan önce gerilimin
		36V'dan düşük olduğundan emin olun.
	\diamond	Gerilim Geri Beslemesi Riski Devreler üzerinde
		çalışmadan önce, Kesintisiz Güç Kaynağını (UPS) izole
		edin ve ardından koruyucu toprak dahil tüm terminaller
		arasında Tehlikeli Gerilim kontrolü yapın.
	\diamond	Yükün toprak kaçak akımı RCCB veya RCD tarafından
		taşınacaktır.
Dikkat	¢	UPS'nin uzun süre depolanmasından sonra ön kontrol
		ve muayene yapılmalıdır.

Bakım & Değişim

;	
Tehlike	 İç kısma erişimi içeren tüm ekipman bakım ve servis prosedürleri özel aletler gerektirir ve yalnızca eğitimli personel tarafından gerçekleştirilmelidir. Yalnızca koruyucu kapağın aletlerle açılması ile erişilebilen bileşenler kullanıcı tarafından çalıştırılamaz. Bu UPS, "IEC62040-1-1-Operatör erişim alanında UPS kullanıma yönelik genel ve güvenlik gereklilikleri" ile tam olarak uyumludur. Akü kutusunda tehlikeli gerilimler mevcuttur. Ancak, bu yüksek gerilimlerle temas riski servis personeli olmayan kişiler için en aza indirilir. Tehlikeli gerilime sahip bileşene yalnızca koruyucu kapağı bir aletle açarak dokunulabilindiğinden, yüksek gerilim

	olasılığı en aza indirilmiştir. Bu kılavuzda önerilen çalıştırma
	prosedürleri izlenerek, ekipmanın normal şekilde kullanılması
	halinde, hiçbir personel için risk mevcut olmaz.
\diamond	Yangın Riski YANGIN RİSKİNİ AZALTMAK İÇİN,
	SİGORTALARI AYNI TÜR VE DEĞERLERDEKİ
	SİGORTALAR İLE DEĞİŞTİRİN. BAKIM
	ÖNCESİNDE TÜM GÜÇ ÇIKIŞ VE GİRİŞ
	KAYNAKLARININ BU EKİPMAN
	İLE BAĞLANTISINI KESİN.

Akü Güvenliği

0		
	♦	İc kışma erişimi içeren tüm akü bakım ve şerviş proşedürleri özel
		alatlan yaya anahtanlan aanaltinin ya yalmaaa aditimli namaanal
		alettel veya analitariai gelektirii ve yaniizea egitinin personel
		tarafından gerçekleştirilmelidir.
	♦	BAĞLANTISI KURULDUĞUNDA, AKÜ TERMİNAL
		GERİLİMİ 400Vde'yi ASACAKTIR VE BU POTANSİYEL
		OLAKAK OLUMICULDUK.
	\diamond	Akü üreticileri, büyük bir pil hücresi kümesi üzerinde veya
		yakınında çalışırken uyulması gereken önlemlere ilişkin ayrıntıları
		sağlar. Bu önlemlere her zaman eksiksiz olarak uyulmalıdır. Yerel
		cevre kosulları ve koruvucu givsi ilk vardım ve vangınla
		edilmelidir
	~	Ortom sizakliği altü kanasitasini və ömrünü halirlama kanusunda
	Ŷ	
		önemli bir faktördür. Akünün nominal çalışma sıcaklığı 20°C'dir.
		Bu sıcaklığın üzerinde çalışmak akünün ömrünü kısaltır. UPS'nin
		yedekleme süresini sağlamak için aküyü periyodik olarak akü
		kullanım kılavuzlarına göre değistirin.
	♦	Aküleri yalnızca avnı türde ve avnı numarava şahin olanlar
	Ý	ile de Xietining electionale de de de de de de de de de de de de de
A		ne değiştirin, aksi takdırde bu durum patiamaya veya
14		performans düşüşüne sebep olabılır.
Tehlike	\diamond	Akünün bağlantısını kurarken, yüksek gerilim çalışmasına yönelik
		önlemleri uygulayın ve aküyü kabul edip kullanmadan önce
		akünün görünümünü kontrol edin. Ambalai hasarlıvsa veva akü
		terminali kirli, aşınmış veya paslanmışsa ya da kabuk kırılmış,
		deforme olmus veva sızıntı varsa, veni ürünle değistirin. Aksi
		takdirda hu durum akü kanasitasinin düamasina alaktrik kasağına
		veya yangina neden olabilir.
		 Aküyü çalıştırmadan önce, yüzük, saat, kolye, bilezik ve diğer
		metal takıları çıkarın
		 Lastik eldiven giyin.
		 Kazara elektrik arklarından kaynaklanabilecek
		yaralanmaları önlemek için göz koruması takılmalıdır.
		• Yalnızca yalıtımlı saplı aletler (örn. somun anahtarı) kullanın.
		• Aküler fazla ağırlığa sahiptir. Akü terminalinin hasar
		görmesini veva bir insanın zarar önlemek icin lütfen aküvü
		uvgun bir vöntemle kullanın ve kaldırın.
		 Akiivii narcalamayın jizerinde değişiklik yanmayın yeva
		ona hasar vermeyin. Aksi takdirde hu durum akü kısa
		devresi sızıntı ve hatta insan varalanmasına neden
		olabilir
		oneonin,

· · · · · ·	
	 Akü sülfürik asit içerir. Normal çalışmada, tüm sülfürik asit aküdeki ayırma kartında ve plakasında kalır. Ancak, akü kutusu bozulduğunda, asit aküden sızacaktır. Bu nedenle, aküyü çalıştırırken bir çift koruyucu gözlük, lastik eldiven taktığınızdan ve önlük giydiğinizden emin olun. Aksi takdirde, asit gözlerinize girerse kör olabilirsiniz ve cildiniz asitten dolayı zarar görebilir. Akü ömrünün sonunda akünün dahili kısa devresi, elektrolitik tahliyesi ve pozitif/negatif plakaların erozyonu meydana gelebilir. Bu durum devam ederse, akünün sıcaklığı kontrol dışı hale gelebilir, şişme veya sızıntı meydana gelebilir. Bu olaylar meydana gelmeden önce aküyü değiştirdiğinizden emin olun. Bir akü elektrolit sızdırıyorsa veya farklı bir şekilde fiziksel olarak hasar görmüşse; değiştirilmeli, sülfürik aside dayanıklı bir muhafazada saklanmalı ve yerel düzenlemelere uygun olarak bertaraf edilmelidir.
	 düzenlemelere uygun olarak bertaraf edilmelidir. Elektrolit cilt ile temas ederse, etkilenen bölge derhal su ile yıkanmalıdır.

Bertaraf

|--|

1 Genel Bakış

1.1 Ürün Tanımı

RM serisi Modüler UPS, dijital sinyal işleme (DSP) teknolojisini kullanan çevrimiçi bir çift dönüşümlü UPS'dir. Önemli yük için sabit ve kesintisiz bir güç kaynağı sağlayın.

1.2 Sistem kavramsal şeması

Modüler UPS aşağıdaki parçalar ile yapılandırılır: Güç modülleri, By-pass ve İzleme ünitesi ve manuel By-pass anahtarlı kabin. Şebeke arızalandığı takdirde destek enerji sağlamak için bir veya birkaç akü dizisi takılmalıdır. UPS yapısı Şekil 1-1'de gösterilmiştir.

Şekil 1-1 UPS Kavramsal Şeması

1.3 Güç modülü kavramsal şeması

Güç modülü kavramsal şeması Şekil 1-2'de gösterilmiştir. Güç modülü, harici akülerin şarjı ve deşarjı için bir redresör, bir invertör ve bir DC/DC dönüştürücü içerir.

Şekil 1-2 Güç modülü kavramsal şeması

1.4 Çalışma Modları

Modüler UPS, aşağıdaki modlarda çalışmaya izin veren çevrimiçi, çift dönüşümlü, ters aktarmalı bir UPS'dir:

- Normal Mod
- Akü modu
- By-pass modu
- Bakım modu (manuel by-pass)
- ECO Modu
- Otomatik yeniden başlatma modu
- Frekans Konvertör Modu

1.4.1 Normal Mod

Güç modüllerinin invertörleri sürekli olarak kritik AC yükünü besler. Redresör/şarj cihazı AC şebeke giriş kaynağından güç alır ve aynı anda FLOAT veya BOOST ile ilişkili yedek aküyü şarj ederken invertöre DC güç sağlar.

Şekil 1-3 Normal modda UPS kavramsal şeması

Enerji akış yönünü gösterir.

1.4.2 Akü Modu

AC şebeke giriş gücünün kesilmesi halinde, aküden güç alan invertör güç modülleri kritik AC yükünü besler. Arıza durumunda kritik yükte güç kesintisi olmaz. AC şebeke giriş gücünün geri kazanılmasından sonra, "Normal Mod" üzerinden çalışma kullanıcı müdahalesi gerekmeksizin otomatik olarak devam edecektir.

Şekil 1-4 Akü modunda UPS kavramsal şeması

Not

Akü soğuk başlatma fonksiyonu ile UPS şebeke olmadan çalışabilir. Daha fazla ayrıntı için kısım 4.1.2'ye bakın.

1.4.3 By-pass Modu

İnvertör aşırı yük kapasitesi normal modda aşılırsa veya invertör herhangi bir nedenle kullanılamaz duruma gelirse, statik transfer anahtarı yükün invertör kaynağından by-pass kaynağına aktarılmasını sağlar ve kritik AC yükünde güç kesintisi olmaz. İnvertörün by-pass ile asenkron hale gelmesi durumunda, statik anahtar yükün invertörden by-pass'e yükte güç kesintisi ile aktarımını gerçekleştirecektir. Bu, senkronize olmayan AC kaynaklarının paralel olmasından dolayı büyük çapraz akımlardan kaçınmak amaçlıdır. Bu kesinti programlanabilir ancak tipik olarak bir elektrik çevriminin 3/4'ünden daha az, örneğin 15ms'den (50Hz) daha az veya 12.5ms'den (60Hz) daha az olacak şekilde ayarlanır. Aktarma/yeniden aktarma eylemi komut ile monitör aracılığıyla da yapılabilir.

Şekil 1-5 By-pass modunda UPS kavramsal şeması

1.4.4 Bakım Modu (Manuel By-pass)

UPS, örn. bir bakım süreci sırasında kullanılamaz duruma geldiğinde kritik yüke sürekli besleme sağlamak için manuel by-pass anahtarı mevcuttur.

Şekil 1-6 Bakım modunda UPS kavramsal şeması

- Bakım modunda, tüm modüller ve LCD kapalı olsa bile giriş, çıkış terminalinde ve nötr terminalde tehlikeli gerilimler mevcuttur.
- UPS'de Bakım modunda Harici bakım anahtarı bulunmadığı takdirde, terminalde ve dahili Bakır çubukta tehlikeli gerilimler mevcuttur.

1.4.5 ECO Modu

Ekonomik Kontrollü Çalışma (ECO) modu, enerji tasarrufu modudur. ECO modunda, by-pass giriş gerilimi ECO gerilim aralığında olduğunda, statik by-pass açılır ve bypass güç sağlar ve invertör beklemede kalır. By-pass giriş voltajı ECO gerilim aralığının dışında olduğunda, UPS by-pass modundan normal moda geçer.

Şekil 1-7 ECO modunda UPS kavramsal şeması

Not

ECO modundan akü moduna geçerken kısa bir kesinti süresi (10ms'den az) vardır, bu sürenin yükler üzerinde hiçbir etkisi olmadığından emin olunmalıdır.

1.4.6 Otomatik Yeniden Başlatma Modu

Akü, uzun bir AC şebeke arızasından sonra bitebilir. Akü deşarj sonu gerilimine (EOD) ulaştığında invertör kapanır. UPS, "EOD sonrasında Sistem Otomatik Başlatma Modu" na programlanabilir. Sistem, AC şebekesi düzeldiğinde gecikme süresinden sonra başlar. Bu mod ve gecikme süresi devreye alma mühendisi tarafından programlanır.

1.4.7 Frekans Konvertör Modu

UPS'nin Frekans Konvertör moduna ayarlanması ile UPS kararlı bir sabit frekans çıkışı (50 veya 60Hz) sunabilir ve by-pass statik anahtarı kullanılamaz.

1.5 UPS Yapısı

1.5.1 UPS Yapılandırma Rasyonu

UPS yapılandırma rasyonu Tablo 1-1'de sağlanmıştır.

Öğe	Bileşenler	Miktar/adet	Açıklama
2 yuvalı Kabin		4	fabrikada yerleştirilmiş
10 yuvali Kabin	By-pass & İzleme ünitesi	1	fabrikada yerleştirilmiş
4 yuvalı Kabin	Manuel By-pass Kesici	1	fabrikada yerleştirilmiş
6 yuvalı Kabin	By-pass & İzleme ünitesi	1	fabrikada yerleştirilmiş
40kVA Güç modülü	Güç modülü	1~10	Zorunlu, sahada yerleştirilmiş
50kVA Güç modülü	Güç modülü	1~10	Zorunlu, sahada yerleştirilmiş

Tablo 1-1 UPS Taplialiuli lila Kasyoli	Tablo 1-	1 UPS Ya	apılandırn	na Rasyoni
--	----------	----------	------------	------------

1.5.2 UPS Yapısı

UPS yapısı Şekil 1-8'de gösterilmektedir.

(a) 2 yuvalı UPS Kabini yapısı

(c) 6 yuvalı UPS Kabini yapısı

(d) 10 yuvalı UPS Kabini yapısı Şekil 1-8 UPS yapısı

2 Kurulum

2.1 Yer

Her bir sahanın kendi özel gereklilikleri olduğundan, bu bölümdeki kurulum talimatları, kurulum mühendisi tarafından gözlemlenmesi gereken genel prosedürler ve uygulamalar için bir rehber görevi görecektir.

2.1.1 Kurulum Ortamı

UPS, iç mekana kurulum için tasarlanmıştır ve dahili fanlar ile zorlamalı konveksiyon soğutması kullanır. Lütfen UPS havalandırması ve soğutması için yeterli alan bulunduğundan emin olun.

UPS'yi su, ısı ve yanıcı ve patlayıcı, aşındırıcı maddelerden uzak tutun. UPS'yi doğrudan güneş ışığı, toz, uçucu gazlar, aşındırıcı malzeme ve yüksek tuzluluk oranı içeren bir ortama kurmaktan kaçının.

UPS'yi iletken toz bulunan bir ortama kurmaktan kaçının.

Akü için çalışma ortamı sıcaklığı 20° C - 25° C'dir. 25° C 'nin üzerinde çalışma akü ömrünü azaltır ve 25° C 'nin altında çalışma ise akü kapasitesini azaltır.

Akü, şarj işlemi sonunda az miktarda hidrojen ve oksijen üretecektir, akü kurulum ortamının temiz hava hacmi EN50272-2001 gereksinimlerini karşılamadığından emin olun.

Harici aküler kullanılacaksa, akü devre kesicileri (veya sigortaları) akülere mümkün olduğunca yakın monte edilmeli ve bağlantı kabloları mümkün olduğunca kısa olmalıdır.

2.1.2 Saha Seçimi

Zemin veya kurulum platformunun UPS kabininin, akülerin ve akü rafinın ağırlığını taşıyabildiğinden emin olun.

UPS kabini, akü kutusu ve akü rafı, betona veya diğer yanıcı olmayan yüzeylere montaj için uygundur.

Titreșimsiz ve yatay olarak en fazla 5 derece eğim.

Ekipman, onu aşırı neme ve ısı kaynaklarına karşı koruyacak bir odada depolanmalıdır. Akü iyi havalandırılan kuru ve serin bir yerde depolanmalıdır. En uygun depolama sıcaklığı 20°C ila 25°C'dir.

2.1.3 Ağırlık ve Boyutlar

UPS kabini için üç boyutun büyüklüğü Şekil 2-2'de gösterilmektedir.

Ön tarafta ön kapı açıkken güç modüllerinin kolayca idare edilmesi için en az 0.8m ve arka tarafta ise havalandırma ve soğutma için en az 0.5m mesafe olduğundan emin olun. Kabin için ayrılan oda Şekil 2-1'de gösterilmektedir.

Şekil 2-1 Kabin için ayrılan oda (Birim: mm)

(a) 2 yuvalı kabinin boyutları (birim: mm)

(b) 4 yuvalı kabinin boyutları (birim: mm)

(c) 6 yuvalı kabinin boyutları (birim: mm)

(d) 10 yuvalı kabinin boyutları (birim: mm)

Şekil 2-2 Boyutlar

Zemin veya kurulum desteğinin UPS, aküler ve akü raflarının ağırlığını taşıyabildiğinden emin olun. Akülerin ve akü raflarının ağırlığı, sahanın gerekliliklerine bağlıdır. UPS kabininin ağırlığı Tablo 2-1'de gösterilmektedir.

Kapasite	Ağırlık
2 yuvalı Kabin	120 Kg
4 yuvalı Kabin	170 Kg
6 yuvalı Kabin	220 Kg
10 yuvalı Kabin	450 Kg
40KVA güç modülü	44 Kg
50KVA güç modülü	45 Kg

2.2 Nakliyeden İndirme ve Ambalajdan Çıkarma

2.2.1 Kabinin Hareket Ettirilmesi ve Ambalajdan Çıkarılması

Kabini hareket ettirme ve ambalajından çıkarma adımları aşağıdaki gibidir:

- 1) Ambalajda herhangi bir hasar olup olmadığını kontrol edin. (Varsa, nakliyeciye başvurun)
- 2) Şekil 2-3'te gösterildiği gibi ekipmanı forklift ile belirlenen yere taşıyın.

Şekil 2-3 Ekipmanın belirlenen yere taşınması

3) Çelik kenarlı ahşap kasanın üst plakasını sonrasında yan panelleri yarık biz ve gerekli alet ile açın (bkz. Şekil 2-4).

Şekil 2-4 Kasanın ayrılması

4) Kabin etrafındaki koruyucu köpüğü çıkarın.

Şekil 2-5 Koruyucu köpüğü çıkarma

5) UPS'yi kontrol edin.

(a) Nakliye sırasında UPS'nin hasar olup olmadığını gözlerinizle olarak inceleyin. Varsa, nakliyeciye başvurun.

(b) Malların listesi ile beraber UPS'yi kontrol edin. Listeye herhangi bir kalem dahil değilse, şirketimizle veya yerel ofisimizle iletişime geçin.

- 6) Sökme işleminden sonra kabini ve ahşap paleti bağlayan cıvatayı sökün.
- 7) Kabini kurulum konumuna taşıyın.

Dikkat

Ekipmanın çizilmesinden kaçınmak için çıkarırken dikkatli olun.

Dikkat

Ambalajdan çıkan atık maddeler çevremim korunması gerekliliğini karşılamak için bertaraf edilmelidir.

2.3 Konumlandırma

2.3.1 Kabinin Konumlandırılması

UPS kabini kendisini iki şekilde destekler: Biri geçici olarak alttaki dört tekerlekle kendini destekleyerek kabinin pozisyonunu ayarlamayı kolaylaştırır, diğeri kabinin konumu ayarladıktan sonra kabini kalıcı olarak destekleme görevi görecek ankraj cıvatalarıdır. Destekleyici yapı Şekil 2-6'da gösterilmektedir.

(a) 2 yuvalı Kabinin destek yapısı (Alttan görünüm, birim: mm)

(b) 4 yuvalı Kabin ve 6 yuvalı Kabinin destek yapısı (Alttan görünüm, birim: mm)

10 yuvalı kabinin destek yapısı (Alttan görünüm, birim: mm)

Şekil 2-6 Destek yapısı

Kabini konumlandırma adımları aşağıdaki gibidir:

- 1) Destek yapısının iyi durumda olduğundan ve montaj zemininin düzgün ve sağlam olduğundan emin olun.
- 2) Ankraj cıvatalarını, somun anahtarı kullanarak saat yönünün tersine çevirerek gevşetin. Bunun sonrasında kabin dört tekerlek tarafından desteklenir.
- 3) Destek tekerleği ile dolabı doğru konuma ayarlayın.
- 4) Ankraj cıvatalarını anahtar kullanarak saat yönünde çevirerek indirin, bu işlemin sonrasında kabin dört ankraj cıvatası ile desteklenecektir.
- 5) Dört ankraj cıvatasının aynı yükseklikte ve kabinin sabit olduğundan ve hareket etmesi mümkün olmadığından emin olun.
- 6) Konumlandırma tamamlanır.

Dikkat

Montaj zemini kabini destekleyecek kadar sağlam olmadığında, ağırlığın daha geniş bir alana dağıtılmasına destek olan yardımcı ekipmanlara ihtiyaç vardır. Örneğin, zemini demir plaka ile kaplayabilir veya ankraj cıvatalarının destek alanını arttırabilirsiniz.

2.4 Akü

Akü ünitesinden üç terminal (pozitif, nötr, negatif) çekilir ve UPS sistemi ile bağlantıları kurulur. Nötr hat, akülerin ortasından seri olarak çekilir (Bkz. Şekil 2-7).

Şekil 2-7 Akü dizisi kablolama şeması

Akü terminal voltajı 200Vdc'den fazladır, elektrik çarpması tehlikesini önlemek için lütfen güvenlik talimatlarını takip edin.

Pozitif, negatif, nötr elektrotun akü ünitesi terminallerinden kesiciye ve kesiciden UPS sistemine doğru şekilde bağlı olduğundan emin olun.

2.5 Kablo Girişi

Kablolar 2 yuvalı kabine ve 4 yuvalı kabine alttan girebilir, 6 yuvalı kabine üstten girebilir ve 10 yuvalı kabine ise hem üstten hem alttan girebilir. Şekil 2-8'de kablo girişi gösterilmektedir.

(a) 2 yuvalı Kabin ve 4 yuvalı Kabinin Kablo Girişi

(b) 6 yuvalı Kabinin Kablo Girişi

(c) 10 yuvalı Kabine Üstten Kablo Girişi

(d) 10 yuvalı Kabine Alttan Kablo Girişi

Şekil 2-8 Kablo Girişi

2.6 Güç Kabloları

2.6.1 Özellikler

UPS güç kablolarına ilişkin öneriler Tablo 2-2'de verilmiştir.

	İçindekiler		80/40	100/50	150/50	200/50	250/50	300/50	400/40	500/50
	Ana Giri Akım (A	ş)	128	159	239	319	398	478	638	797
		А	35	50	95	120	185	185	2*150	2*185
Ana Giriş	Kablo Kesiti	В	35	50	95	120	185	185	2*150	2*185
	(mm^2)	С	35	50	95	120	185	185	2*150	2*185
		Ν	35	50	95	120	185	185	2*150	2*185
	Ana Çıkış Akım (A	;)	121	152	227	303	379	454	606	758
		А	35	50	70	120	185	185	2*150	2*185
Ana Çıkış	Kablo Kesiti	В	35	50	70	120	185	185	2*150	2*185
	(mm^2)	С	35	50	70	120	185	185	2*150	2*185
		Ν	35	50	70	120	185	185	2*150	2*185
By-pass giriși	By-pass Gi Akımı (A	riși)	121	152	227	303	379	454	606	758

Tablo 2-2 Güç kabloları için tavsiye edilen kablolar

(Opsiyonel)		А	35	50	70	120	185	185	2*150	2*185
	Kablo Kesiti	В	35	50	70	120	185	185	2*150	2*185
	(mm^2)	С	35	50	70	120	185	185	2*150	2*185
		Ν	35	50	70	120	185	185	2*150	2*185
	Akü Giriş Akım (A	i A)	167	208	313	417	521	626	833	1042
Akü		+	50	70	120	185	240	240	2*185	2*240
Girişi	Kablo Kesiti	-	50	70	120	185	240	240	2*185	2*240
	(mm ²)	Ν	50	70	120	185	240	240	2*185	2*240
PE	Kablo Kesiti	PE	50	70	120	185	2*120	2*120	2*150	2*150
PE	(mm ²)	PE	50	70	120	185	2*120	2*120	2*150	

Not

- Güç kabloları için tavsiye edilen kablo kesiti yalnızca aşağıda açıklanan durumlar içindir:
- Ortam sıcaklığı: 30°C.
- AC kaybı %3'ten az, DC kaybı %1'den az, AC güç kablolarının uzunluğu 50 m'den kısa ve DC güç kablolarının uzunluğu 30 m'den kısa.
- Tabloda listelenen akımlar 380V sisteme dayanmaktadır (Hatlar arası gerilim).
- Nötr hatların boyutu, baskın yük doğrusal olmadığında yukarıda listelenen değerin $1,5 \sim 1,7$ • katı olmalıdır.

Güç Kablosu Terminallerinin Özellikleri 2.6.2

Güç kabloları konnektörü için özellikler Tablo 2-3'te listelenmiştir.

Tür	Port	Bağlantı	Cıvata	Tork Momenti
Şebeke girişi		Kıvrılmış kablolar OT terminali	M6	4.9Nm
2 yawalı By	By-pass girişi	Kıvrılmış kablolar OT terminali	M6	4.9Nm
kabin	Akü Girişi	Kıvrılmış kablolar OT terminali	M8	13Nm
	Çıkış	Kıvrılmış kablolar OT terminali	M6	4.9Nm
	PE	Kıvrılmış kablolar OT terminali	M6	4.9Nm
	Şebeke girişi	Kıvrılmış kablolar OT terminali	M10	15Nm
4 yuyalı	By-pass girişi	Kıvrılmış kablolar OT terminali	M10	15Nm
kabin	Akü Girişi	Kıvrılmış kablolar OT terminali	M10	15Nm
	Çıkış	Kıvrılmış kablolar OT terminali	M10	15Nm
	PE	Kıvrılmış kablolar OT terminali	M10	15Nm
Şebeke girişi		Kıvrılmış kablolar OT terminali	M12	28Nm
6 yuyalı	By-pass girişi	Kıvrılmış kablolar OT terminali	M12	28Nm
kabin	Akü Girişi	Kıvrılmış kablolar OT terminali	M12	28Nm
	Çıkış	Kıvrılmış kablolar OT terminali	M12	28Nm
	PE	Kıvrılmış kablolar OT terminali	M12	28Nm
10 yuvalı	Şebeke girişi	Kıvrılmış kablolar OT terminali	M16	96Nm
kabin	By-pass girişi	Kıvrılmış kablolar OT terminali	M16	96Nm

Tablo 2-3 Güç n	odülü terminali gereklilikleri
-----------------	--------------------------------

Akü Girişi	Kıvrılmış kablolar OT terminali	M16	96Nm
Çıkış	Kıvrılmış kablolar OT terminali	M16	96Nm
PE	Kıvrılmış kablolar OT terminali	M16	96Nm

2.6.3 Devre Kesici

Sistem için tavsiye edilen devre kesiciler (CB), Tablo 2-4'te gösterilmektedir.

Yerleştirilen	80/40	100/50	150/50	200/50		
konum						
Ana giriş CB	160A/3P	250A/3P	320A/3P	400A/3P		
By-pass girişi CB	160A/3P	250A/3P	320A/3P	400A/3P		
Çıkış CB	160A/3P	250A/3P	320A/3P	400A/3P		
Manuel	160 A /3 P	250 A /3 P	320 A /3 D	400 A /3 P		
By-pass CB	100A/51	230A/31	520A/51	400A/31		
Al-ä CD	225A,	250A,	400A,	630A,		
Аки СБ	250Vdc	250Vdc	250Vdc	250Vdc		
Yerleştirilen	250/50	300/50	400/40	500/50		
konum						
Ana giriş CB	630A/3P	630A/3P	800A/3P	800A/3P		
By-pass girişi CB	630A/3P	630A/3P	800A/3P	800A/3P		
Çıkış CB	630A/3P	630A/3P	800A/3P	800A/3P		
Manuel	(20 A /2D	(20 A /2D	000 A /2D	900 A /2D		
By-pass CB	030A/3P	030A/3P	800A/3P	800A/3P		
Al-:: CD	800A/3P	1000 A /2D 250V do	1000A,	1250A,		
AKUCB	250Vdc	1000A/3P 250Vdc	250Vdc	250Vdc		

Tablo 2-4 Taysiye edilen devre keşiçiler

RCD'li CB (Kaçak Akım Cihazı) sistem için önerilmez.

2.6.4 Güç Kabloları Bağlantılarının Oluşturulması

Güç kabloları bağlantılarının adımları aşağıdaki gibidir:

- 1) UPS'nin tüm anahtarlarının tamamen açıldığını ve UPS dahili bakım by-pass anahtarının açık olduğunu doğrulayın. Ekipmanın yetkisiz çalıştırılmasını önlemek için bu anahtarlara gerekli ikaz işaretlerini sağlayın.
- 2) Kabinin ön kapısını açın (10 yuvalı Kabinde arka kapıyı açın), plastik kapağı çıkarın. Giriş ve çıkış terminali, akü terminali ve koruyucu toprak terminali Şekil 2-9'da gösterilmektedir.

(a) 2 yuvalı kabinin bağlantı terminalleri

(b) 4 yuvalı kabinin bağlantı terminalleri

(c) 6 yuvalı kabinin bağlantı terminalleri

Şekil 2-9 Bağlantı terminalleri

- 3) Koruyucu topraklama kablosunu koruyucu topraklama terminaline (PE) takın.
- 4) AC giriş besleme kablolarını Giriş terminaline ve AC çıkış besleme kablolarını Çıkış terminaline takın.
- 5) Akü kablolarını Akü terminaline takın.
- 6) Hata olmadığından emin olun ve tüm koruyucu kapakları tekrar yerleştirin.

Bu bölümde açıklanan işlemler yetkili elektrik teknisyenleri veya kalifiye teknik personel tarafından gerçekleştirilmelidir. Herhangi bir sorun halinde, üretici veya acenteye başvurun.

- Bağlantı terminallerini yeterli tork momentini elde edene kadar sıkın, Tablo 2-3'e bakın ve doğru faz dönüşünü sağlayın.
- Topraklama kablosu ve nötr kablo yerel ve ulusal yasalara göre bağlanmalıdır.
- Yük, UPS sistemi ile aynı toprağa bağlı olmalıdır.

2.7 Kontrol ve İletişim Kabloları

By-pass modülünün ön paneli, Şekil 2-10'da gösterildiği gibi kuru kontak arabirimi (J2-J11) ve iletişim arabirimini (RS232, RS485, SNMP, Akıllı kart arabirimi ve USB bağlantı noktası) sağlar.

(a) 2 yuvalı kabinin ve 6 yuvalı kabinin kuru kontak & iletişim arabirimi

Battery Cold Start

(a) 10 yuvalı kabinin kuru kontak & iletişim arabirimi

Şekil 2-10 Kur	u kontak &	iletişim	arabirimi
----------------	------------	----------	-----------

2.7.1 Kuru Kontak Arabirimi

Kuru kontak arabirimi J2-J11 portunu içerir ve kuru kontağın fonksiyonları Tablo 2-5'te gösterilmiştir. Tablo 2-5 Port fonksiyonları

Port	İsim	Fonksiyon
J2-1	TEMP_BAT	Akü sıcaklığı tespiti
J2-2	TEMP_COM	Sıcaklık tespiti için ortak terminal
J3-1	ENV_TEMP	Ortam sıcaklığı tespiti
J3-2	TEMP_COM	Sıcaklık tespiti için ortak terminal
J4-1	REMOTE_EPO_NC	J4-2 ile bağlantı kesildiğinde EPO tetiklenir
J4-2	+24V_DRY	+24V
J4-3	+24V_DRY	+24V
J4-4	REMOTE_EPO_NO	J4-3 kısa devre olduğunda EPO tetiklenir
J5-1	+24V_DRY	+24V
15-2	GEN CONNECTED	Giriş kuru kontağı, fonksiyon ayarlanabilir.
35-2	UEN_CONNECTED	Varsayılan: jeneratör için arabirim
J5-3	GND_DRY	+24V için topraklama
16-1	BCB Drive	Çıkış kuru kontağı, fonksiyon ayarlanabilir.
30-1	BCB Drive	Varsayılan: Akü boşalma sinyali

		Giriş kuru kontağı, fonksiyon ayarlanabilir.
J6-2	BCB Status	Varsayılan: BCB Durum ve BCB Çevrimiçi,
		(BCB Durum geçersiz olduğunda akü yok
		uyarısı).
J7-1	GND_DRY	+24V için topraklama
		Giriş kuru kontağı, fonksiyon ayarlanabilir.
J7-2	BCB_Online	Varsayılan: BCB Durum ve BCB Çevrimiçi,
		(BCB Durum geçersiz olduğunda akü yok
		uyarısı).
		Çıkış kuru kontağı (Normalde kapalı), fonksiyon
J8-1	BAT_LOW_ALARM_NC	ayarlanabilir.
		Varsayılan: Düşük akü alarmı
		Çıkış kuru kontağı (Normalde açık), fonksiyon
J8-2	BAT_LOW_ALARM_NO	ayarlanabilir.
		Varsayılan: Düşük akü alarmı
J8-3	BAT_LOW_ALARM_GND	J8-1 ve J8-2 için ortak terminal
		Çıkış kuru kontağı (Normalde kapalı), fonksiyon
J9-1	GENERAL_ALARM_NC	ayarlanabilir.
		Varsayılan: Arıza alarmı
		Çıkış kuru kontağı (Normalde açık), fonksiyon
J9-2	GENERAL ALARM NO	ayarlanabilir.
		Varsayılan: Arıza alarmı
J9-3	GENERAL_ALARM_GND	J9-1 ve J9-2 için ortak terminal
		Çıkış kuru kontağı (Normalde kapalı), fonksiyon
J10-1	UTILITY FAIL NC	ayarlanabilir.
		Varsayılan: Şebeke anormal alarmı
		Çıkış kuru kontağı (Normalde açık), fonksiyon
J10-2	UTILITY FAIL NO	ayarlanabilir.
		Varsayılan: Şebeke anormal alarmı
J10-3	UTILITY_FAIL_GND	J10-1 ve J10-2 için ortak terminal

Not

Her bağlantı noktası için ayarlanabilir fonksiyonlar izleme yazılımı tarafından ayarlanabilir.

Her bağlantı noktasının varsayılan fonksiyonları aşağıda açıklanmaktadır.

Akü İkaz Çıkışı Kuru Kontak Arabirimi

Giriş kuru kontağı J2 ve J3, ortam izleme ve akü sıcaklığı kompanzasyonunda kullanılabilen sırasıyla akülerin ve ortamın sıcaklığını tespit edebilir. J2 ve J3 için arabirim şeması Şekil 2-11'de gösterilmektedir, arabirimin açıklaması Tablo 2-6'da mevcuttur

.

Şekil 2-11 Sıcaklık tespiti için J2 ve J3

Tablo 2-6 J2	ve J3 için	açıklama
--------------	------------	----------

Port	İsim	Fonksiyon
J2-1	TEMP_BAT	Akü sıcaklığı tespiti
J2-2	TEMP_COM	ortak terminal
J3-1	ENV_TEMP	Ortam sıcaklığı tespiti
J3-2	TEMP_COM	ortak terminal

Not

Sıcaklık tespiti için belirtilen sıcaklık sensörü gereklidir (R25 = 5Kohm, B25 / 50 = 3275), lütfen üreticiyle bu hususu onaylayın veya sipariş verirken yerel bakım mühendisleriyle iletişime geçin. Uzaktan EPO Giriş Portu

J4 Uzaktan EPO için giriş portudur. Normal çalışma sırasında NC ve

kısa devre gerektirir ve NC ve + 24V açılırken veya NO ve +24V kısa devre yapılırken EPO tetiklenir. Port şeması, Şekil 2-12'de ve port açıklaması Tablo 2-7'de gösterilmiştir.

Şekil 2-12 Uzaktan EPO için giriş portunun şeması

Port	İsim	Fonksiyon
J4-1	REMOTE_EPO_NC	J4-2 ile bağlantı kesildiğinde EPO
		tetiklenir
J4-2	$+24V_DRY$	+24V
J4-3	+24V_DRY	+24V
IA_A	REMOTE_EPO_NO	J4-3 ile bağlantı kurulduğunda EPO
54-4		tetiklenir

Tablo 2-7 Uzaktan EPO için giriş portunun açıklaması

Jeneratör Girişi Kuru Kontak

J5'in varsayılan fonksiyonu J5 jeneratörü için arabirim oluşudur. J5'in pim 2'si ile +24V güç kaynağının bağlantısının kurulması jeneratörün sisteme bağlandığını gösterir. Arabirim şeması, Şekil 2-13'de ve arabirim açıklaması Tablo 2-8'de gösterilmiştir.

Şekil 2-13 Jeneratör durum arabirimi ve bağlantının şeması

Tablo 2-8 Jeneratör durum	arabirimi ve bağ	ğlantısının açıklaması
---------------------------	------------------	------------------------

Port	İsim	Fonksiyon
J5-1	+24V_DRY	+24V
J5-2	GEN_CONNECTED	Jeneratörün bağlantı durumu
J5-3	GND_DRY	+24 V için güç topraklaması

BCB Giriş Portu

J6 ve J7'nin varsayılan fonksiyonu BCB'nin bağlantı noktaları oluşlarıdır. Port şeması, Şekil 2-14'de ve port açıklaması Tablo 2-9'da gösterilmiştir.

Şekil 2-14 BCB Portu

-

Port	İsim	Fonksiyon
J6-1	BCB_DRIV	BCB kontak sürücüsü, +24V gerilim ve 20mA gerilim sinyali sağlar
J6-2	BCB_Status	BCB kontak durumu, BCB'nin normalde açık sinyali ile bağlantısı kurulur
J7-1	GND_DRY	+24 V için güç topraklaması
J7-2	BCB_Online	BCB çevrimiçi giriş (normalde açık), BCB, sinyal J7-1'e bağlıyken çevrimiçidir.

Akü İkaz Çıkışı Kuru Kontak Arabirimi

J8'in varsayılan fonksiyonu, düşük veya aşırı gerilim akü uyarılarını veren çıkış kuru kontak arabirimi olmasıdır, akü gerilimi ayarlanan değerden düşük olduğunda, bir rölenin izolasyonu ile yardımcı kuru
kontak sinyali sağlanacaktır. Arabirim şeması Şekil 2-15'de ve açıklaması Tablo 2-10'da gösterilmiştir.

Şekil 2-15 Akü ikaz kuru kontağı arabirim şeması

Port	İsim	Fonksiyon
I8- 1	BAT LOW ALARM NC	İkaz sırasında akü ikaz rölesi (normalde
50 1		kapalı) açık olacaktır
J8-2	BAT LOW ALARM NO	İkaz sırasında akü ikaz rölesi (normalde
		açık) kapalı olacaktır
J8-3	BAT_LOW_ALARM_GND	Ortak terminal

Genel Alarm Çıkışı Kuru Kontak Arabirimi

J9'un varsayılan fonksiyonu genel alarm çıkışı kuru kontak arabirimi oluşudur. Bir veya daha fazla ikaz tetiklendiğinde, bir rölenin izolasyonu yoluyla yardımcı kuru kontak sinyali aktif olacaktır. Arabirim şeması Şekil 2-16'da ve açıklaması Tablo 2-11'de gösterilmiştir.

Şekil 2-16 Entegre ikaz kuru kontağı arabirim şeması

Tablo 2-11 Genel alarm	ı kuru ko	ontağı arabirin	ı açıklaması
------------------------	-----------	-----------------	--------------

Port	İsim	Fonksiyon
J9-1	GENERAL_ALARM_NC	İkaz sırasında entegre ikaz rölesi (normalde kapalı) açık olacaktır
J9-2	GENERAL_ALARM_NO	İkaz sırasında entegre ikaz rölesi (normalde açık) kapalı olacaktır
J9-3	GENERAL_ALARM_GND	Ortak terminal

Şebeke Arızası İkaz Çıkışı Kuru Kontak Arabirimi

J10'un fonksiyonu, şebeke arızası ikazı için çıkış kuru kontak arabirimi oluşudur şebeke arızalandığında sistem bir şebeke hatası ikaz bilgisi gönderir ve bir rölenin izolasyonu yoluyla yardımcı kuru kontak sinyali sağlar. Arabirim şeması Şekil 2-17'de ve açıklaması Tablo 2-12'de gösterilmiştir.

Şekil 2-15 Şebeke arızası ikaz kuru kontak arabirim şeması

Tabla 2,10	A kii ikaz	2111111	kontaŭi	arabirim	aaiklamaai
1 a010 2-10	ANU INAL	кuiu	KUIItagi	araunni	açıkıaması
			0		,

Port	İsim	Fonksiyon	
I10-1	UTILITY FAIL NC	İkaz sırasında şebeke arızası ikaz rölesi (normalde	
510-1		kapalı) açık olacaktır	
I10-2	ΠΤΗ ΙΤΥ ΕΔΗ ΝΟ	İkaz sırasında şebeke arızası ikaz rölesi (normalde	
510-2		açık) kapalı olacaktır	
J10-3	UTILITY_FAIL_GND	Ortak terminal	

2.7.2 İletişim Arabirimi

RS232, RS485 ve USB bağlantı noktası: Yetkili mühendisler tarafından devreye alma ve bakım için kullanılabilen veya servis odasındaki ağ veya entegre izleme sistemi için kullanılabilen seri verileri sağlar.

SNMP: İletişim için sahada kurulumda kullanılır (Opsiyonel). Akıllı kart arabirimi: Genişletilmiş kuru kontak arabirimi (Opsiyonel).

3 Operatör Kontrolü ve Görüntüleme Paneli

3.1 UPS Operatör Paneli

Kabin için operatör kontrol ve görüntüleme panelinin yapısı Şekil 3-1'de gösterilmektedir.

Şekil 3-1 Kontrol ve görüntüleme paneli

Kabin LCD paneli üç fonksiyonel alana ayrılmıştır: LED gösterge, kontrol ve çalıştırma tuşları ile LCD dokunmatik ekran.

3.1.1 LED Gösterge

Panelde çalışma durumunu ve arızayı gösteren 6 LED vardır. (Şekil 4-1'e bakın). Göstergelerin açıklaması Tablo 3-1'de verilmektedir.

Gösterge	Durum	Açıklama
	Sürekli yeşil	Tüm modüller için redresör normal
Redresör	Yanıp sönen	En az bir modülün redresörü normal, sebeke normal
göstergesi	yeşil	En az on modulun rediciora normal, şebeke normal
	Sürekli kırmızı	Redresör arızası
	Yanıp sönen kırmızı	Şebeke en az bir modülde anormal
	Kapalı	Redresör çalışmıyor
	Sürekli yeşil	Akü şarj oluyor
	Yanıp sönen	Akü desari aluvar
Akü	yeşil	Aku deşaij oluyol
göstergesi	Sürekli	Akü anormal (akü arızası, akü yok veya akü ters bağlı) veya akü
	kırmızı	dönüştürücü anormal (arıza, aşırı akım veya aşırı sıcaklık), EOD
	Yanıp sönen kırmızı	Akü düşük gerilimi

Table 2.1	Costorgo	lorin	durum	acilz	lama	ları
1 abio 3-1	uusteige.		uurum	açın	iaiiia.	laii

Gösterge	Durum	Açıklama
	Kapalı	Akü ve akü dönüştürücü normal, akü şarj olmuyor
	Sürekli yeşil	Yük by-pass ile besleniyor
By-pass göstergesi	Sürekli kırmızı	By-pass anormal veya normal aralığın dışında veya statik by-pass anahtarı arızası
	Yanıp sönen kırmızı	By-pass gerilimi anormal
	Kapalı	By-pass normal
	Sürekli yeşil	Yük invertör ile besleniyor
	Yanıp sönen yeşil	En az bir modülde invertör açık, başlatılıyor, senkronize olmuş veya beklemede (ECO modu)
İnvertör göstergesi	Sürekli kırmızı	Sistem çıkışı invertör ile beslenmiyor, en az bir modülde invertör arızalı
	Yanıp sönen kırmızı	Sistem çıkışı invertör ile besleniyor, en az bir modülde invertör arızalı
	Kapalı	İnvertör hiçbir modülde çalışmıyor
	Sürekli yeşil	UPS çıkışı AÇIK ve normal
Yük göstergesi	Sürekli kırmızı	UPS aşırı yüklenme zaman aşımına uğramış veya çıkış kısa devre yapmış veya çıkışta güç beslemesi bulunmuyor
	Yanıp sönen kırmızı	UPS aşırı yük çıkışı
	Kapalı	UPS çıkışı yok
Durum	Sürekli yeşil	Normal çalışma
gösterge	Sürekli kırmızı	Arıza

UPS çalışması sırasında Tablo 3-2'te gösterildiği gibi iki farklı sesli alarm türü vardır.

Tablo 3-2: Sesli alarm tanımı				
Alarm Açıklama				
Bir uzun	Sistemin genel alarmı sırasında (örn. AC arızası)			
iki kısa alarm				
0	Sistemde ciddi arızalar olduğunda (örn. yanmış sigorta veya donanım			
Surekli alarm	arızası)			

3.1.2 Kontrol ve Çalıştırma Tuşları

Kontrol ve çalıştırma tuşları, LCD dokunmatik ekranla birlikte kullanılan 2, 10, 11 ve 12 tuşlarına (Bkz. Şekil 3-1) sahiptir. Fonksiyon açıklaması Tablo 3-3'te gösterilmiştir.

Fonksiyonel	Açıklama	
Tuş		
EPO	Uzun basma, yük gücünü kesme (redresör, invertör, statik by-pass ve	
	aküyü kapatma)	
BVD	Uzun basma, by-pass'e aktarım (aktifleştirmek için kapının	
DII	arkasındaki düğme yukarı itilmeli, bkz. Şekil 4-2)	
INV	Uzun basma, invertöre aktarım	
SUSTURMA	Sesli uyarıcıyı kapatmak ve açmak için uzun basma	

Tablo 3-3 Kontrol ve çalıştırma tuşlarının fonksiyonları

RM serisi Modüler UPS 40-500kVA Kullanım Kılavuzu

3.1.3 LCD Dokunmatik Ekran

Kullanıcılar bilgileri kolayca inceleyebilir, UPS'yi çalıştırabilir ve parametreleri kullanıcılar dostu olan LCD dokunmatik ekran üzerinden ayarlayabilir.

İzleme sistemi self-test'e başladıktan sonra, giriş penceresinden sonra sistem ana sayfaya girer. Ana sayfa Şekil 3-2'de gösterilmektedir.

Şekil 3-2 Ana Sayfa

Ana sayfa; Durum çubuğu, Bilgi ekranı, ikaz bilgileri ve ana menüden oluşur.

• Durum çubuğu

Durum çubuğu ürünün modelini, kapasitesini, çalışma modunu, güç modülünün sayısını ve sistemin saatini içerir.

• İkaz Bilgileri

Kabinin ikaz bilgileri bulunan ekran.

• Bilgi ekranı

Bu alanda kullanıcılar kabin bilgilerini kontrol edebilir.

By-pass gerilimi, ana giriş gerilimi, akü gerilimi ve çıkış gerilimleri sayaç şeklinde sunulur. Yükler çubuk grafiği şeklinde yüzde olarak görüntülenir. Yeşil alan %60'tan az bir yük, sarı alan %60-%100 yük ve kırmızı alan ise %100'den fazla bir yükü temsil eder.

Enerji akışı, güç akışını yansıtır.

• Ana Menü

Ana menüde Kabin (Cabinet), Güç Modülü (Power Module), Ayar (Setting), Günlük (Log), İşlem (Operate) ve Ölçek (Scope) bulunur. Kullanıcılar UPS'yi çalıştırabilir ve kontrol edebilir ve ölçülen tüm parametrelere ana menüden göz atabilir.

Ana menü ağacının yapısı Şekil 3-3'te gösterilmektedir.

Şekil 3-3 Menü ağacının yapısı

3.2 Ana menü

Ana menü Kabin, Güç modülü, Ayar, Günlük, Çalışma ve Ölçek'i içerir ve aşağıdaki ayrıntılarda açıklanmıştır.

3.2.1 Kabin

(Ekranın sol alt tarafındaki) simgesine dokunun, böylece sistem Şekil 3-4'te gösterildiği gibi Kabin sayfasına girer.

Şekil 3-4 Kabin

Kabin başlık, veri ekranı, sürüm, çalışma durumu, veri ekranı ve alt menüden oluşur. Bu bölümler aşağıda açıklanmaktadır.

• Başlık

Seçilen alt menüye ait bilgi

• Çalışma durumu

Anlık durum göstergesinde gösterilen kareler çeşitli UPS güç yollarını temsil eder ve mevcut UPS çalışma durumunu gösterir. (Bloğun normal çalıştığını gösteren yeşil kare, bloğun olmadığını gösteren beyaz ve bloğun veya arızanın olmadığını gösteren kırmızı).

Sürüm bilgisi

Kabin ve monitörün LCD için sürüm bilgileri

• Alt menü

Bypass, Giriş, Çıkış, yük ve akü alt menüsünü içerir.

• Bilgi ekranı

Tüm alt menülerin bilgilerini görüntüler.

Her alt menünün arabirimi Şekil 3-5'te gösterilmiştir.

(b) Çıkış Arabirimi

Şekil 3-5 Kabinin Alt Menü Arabirimi

Kabin alt menüsü aşağıdaki Tablo 3-4'te ayrıntılı olarak açıklanmaktadır.

Alt Menü Adı	İçindekiler	Anlam
	V	Faz gerilimi
C^{\prime} (M $^{\prime}$)	А	Faz akımı
Giriş (Main)	Hz	Giriş frekansı
	PF	Güç faktörü
D	V	Faz gerilimi
By-pass	А	Faz akımı

Alt Menü Adı	İçindekiler	Anlam	
	Hz	By-pass frekansı	
	PF	Güç faktörü	
	V	Faz gerilimi	
	А	Faz akımı	
Çıkış (Output)	Hz	Çıkış frekansı	
	PF	Güç faktörü	
	kVA	Sout: Görünür Güç	
X7.1 (T 1)	kW	Pout: Aktif Güç	
Y UK (Load)	kVar	Qout: Reaktif Güç	
	%	Yük (UPS yükü yüzdesi)	
	V	Akü pozitif/negatif Gerilimi	
	А	Akü pozitif/negatif Akımı	
	Capacity (%)	Yeni akü kapasitesiyle karşılaştırma yapılan yüzdelik değer	
Alrö (Dottom)	Remain T (Min)	Kalan akü destek süresi	
Aku (Dallery)	Battery(℃)	Akü Sıcaklığı	
	Ambient(°C)	Ortam Sıcaklığı	
	Total Work T	Toplam çalışma süresi	
	Total Discharge T	Toplam deşarj süresi	

3.2.2 Güç modülü

(Ekranın sol alt tarafındaki) simgesine dokunun, böylece sistem Şekil 3-6'da gösterildiği gibi Güç ünitesi sayfasına girer.

Şekil 3-6 Güç modülü

Modül başlık, bilgi ekranı, güç modülü bilgisi, sürüm bilgisi ve alt menüden oluşur. Bu bölümler aşağıda açıklanmaktadır.

Başlık

Seçilen güç modülünün alt menü başlığını gösterir.

- Bilgi ekranı
- Her alt menünün bilgilerini görüntüler.
- Güç modülü bilgisi

Kullanıcılar "Bilgi ekranı" bölümündeki bilgilere göz atmak için güç modülünü seçebilirler. Anlık durum göstergesindeki karenin renkleri çeşitli güç modülü yollarını temsil eder ve geçerli çalışma durumunu gösterir.

(a) Güç modülünün normal çalıştığını gösteren yeşil kare,

(b) Güç modülünün çalışmadığını gösteren siyah kare

(c) Güç modülünün yokluğunu veya arızayı gösteren kırmızı kare

Örneğin 5# güç modülünü ele alalım. UPS'nin Normal modda olduğunu ve redresörün ve invertörün normal çalıştığını göstermektedir. Akü bağlantısı mevcut değildir.

• Sürüm bilgisi

Seçilen güç modülünün redresör ve invertörünün sürüm bilgisi.

• Alt menü

Alt menü Giriş, Çıkış, Yük, Bilgi ve S-CODE öğelerini içerir.

Kullanıcılar doğrudan simgeye dokunarak her alt menünün arabirimine girebilirler. Alt menülerin her bir arabirimi Şekil 3-7'de gösterilmiştir.

Şekil 3-7 Modül menüsü

Güc modülünün	alt menüleri asağıda	Tablo 3-5'te avrintili	olarak acıklanmaktadır.
,	, 0	5	,

Alt Menü Adı	İçindekiler	Anlam
	V	Seçilen modülün giriş faz gerilimi
C' '	А	Seçilen modülün faz akımı
Giriş	Hz	Seçilen modülün giriş frekansı
	PF	Seçilen modülün güç faktörü
	V	Seçilen modülün çıkış faz gerilimi
C 1	А	Seçilen modülün çıkış faz akımı
Ç1K1ş	Hz	Seçilen modülün çıkış frekansı
	PF	Seçilen modülün çıkış güç faktörü
V		Seçilen modülün yük gerilimi
Vül	%	Yük (Seçilen güç modülünün yük yüzdesi)
I UK	KW	Pout: Aktif Güç
	KVA	Sout: Görünür Güç
BATT+(V)		Akü Gerilimi (pozitif)
	BATT-(V)	Akü Gerilimi (negatif)
	BUS(V)	Bara Gerilimi (Pozitif & Negatif)
	Şarj Elemanı (V)	Şarj Elemanı Gerilimi (Pozitif & Negatif)
Bilgi	Fan Süresi	Seçilen güç modülündeki fanın toplam çalışma süresi
	Giriş Sıcaklığı (°C)	Seçilen güç modülünün giriş sıcaklığı
	Çıkış sıcaklığı (°C)	Seçilen güç modülünün çıkış sıcaklığı
S-kodu	Arıza Kodu	Bakım personeli için

Tablo 3-5 Gücu	nodülünün her	bir alt menüsünün	acıklaması
1 abio 5-5 uuc 1	nouulunun nei	on an menusunun	açımaması

3.2.3 Setting (Ayarlar)

(Ekranın alt tarafındaki) simgesine dokunun, böylece sistem Şekil 3-8'te gösterildiği gibi Ayar sayfasına girer.

	Date Format				DATE & TIME	
YY-MM-DD	MM-DD-	-YY	DD-N	им-үү	LANGUAGE	
,	Time Setting				сомм.	
Cur	Current Time 2014-02-14 11:28:42			28:42	USER	- ⊳ Alt menüler
Please	Please Confirm Settings 🗸 🗙			×	BATTERY	
				SERVICE		
					RATE	
					CONFIGURE	
Home Cabinet						
Ayar arabirimi						

Şekil 3-8 Ayar menüsü

Alt menüler, Ayar sayfasının sağ tarafında listelenir. Kullanıcılar ilgili simgeye dokunarak ayar arabirimlerinin her birine girebilirler. Alt menüler, aşağıdaki Tablo 3-6'da ayrıntılı olarak açıklanmaktadır.

Alt Menü Adı	İçindekiler	Anlam	
	T 11.6	Üç format: (a) yıl/ay/gün, (b)	
Date & Time	Tarih formati ayari	ay/gün/yıl, (c) gün/ay/yıl	
(Tarih & Saat)	Saat ayarı	Saatin ayarlanması	
	Mevcut dil	Kullanılan dil	
Language (Dil)	Dil seçimi	Basit Çince ve İngilizce seçilebilir (Bu ayar, dil simgesine dokunulmasından sonra derhal aktif olur)	
	Cihaz Adresi	İletişim adresinin ayarlanması	
	RS232 Protokol Seçimi	SNT Protokolü, Modbus Protokolü, YD/T Protokolü ve Dwin (fabrika kullanımı için)	
COMM.	Baud hızı	SNT, Modbus ve YD/T'nin baud hızının Ayarlanması	
(Îletişim)	Modbus Modu	Modbus için mod ayarı: ASCII ve RTU seçilebilir	
	Modbus paritesi	Modbus için parite ayarı	
	Çıkış Gerilimi Ayarı	Çıkış gerilimini ayarlama	
	By-pass Gerilimi Üst Sınırı	By-pass için üst çalışma gerilimi sınırı, şunlara ayarlanabilir: +%10, +%15, +%20, +%25	
	By-pass Gerilimi Alt	By-pass için alt çalışma gerilimi sınırı,	
USER	Sınırı	şunlara ayarlanabilir: -%10, -%15, -%20, -%30, -%40	
(Kullanıcı)	By-pass Frekansı Sınırı	By-pass için izin verilen çalışma frekansı Ayarlanabilir: +- 1Hz, +-3 Hz, +-5 Hz	
	Toz Filtresi Bakımı Periyod	Toz Filtresi Bakım Periyodunun Ayarlanması	
	Akü Sayısı	Akü sayısının ayarlanması (12V)	
	Akü Kapasitesi	Akünün AH'sinin ayarlanması	
	Tampon Şarj Gerilimi/Hücresi	Akü hücresi için tampon gerilimin ayarlanması (2V)	
	Hızlı Şarj Gerilimi/Hücre	Akü hücresi için hızlı şarj geriliminin ayarlanması (2V)	
	EOD (Deşarj Sonu Gerilimi) Gerilim/Hücre,@0.6C Akım	Hücre için EOD gerilimi akü,@0.6Cakım	
BATTERY (Akü)	EOD (Deşarj sonu gerilimi) Gerilim/Hücre,@0.15C Akım	Hücre için EOD gerilimi akü,@0.15C akım	
	Şarj Akımı Yüzdesel Sınır	Şarj akımı (beyan akımın yüzdesi)	
	Akü Sıcaklığı Kompanzasyonu	Akü sıcaklığı kompanzasyonu	
	Hızlı Sari Süre Sınırı	Hızlı sari süresini avarlama	
	Otomatik Hızlandırma (Boost) Periyodu	Otomatik hızlandırma periyodunu ayarlama	

Tablo	3-6	Ayarın	tüm	alt	menü	lerinin	açıkla	aması

Alt menü İsim	İçindekiler	Anlam
	Otomatik Bakım	Otomatik bakım deşarjı için periyod
	Deşarj Periyodu	ayarlama
		deşarj
		Sistem modunu ayarlama: Tek, Paralel
SERVICE	Sistem Modu	Tek ECO, paralel ECO, LBS, paralel
(Servis)		LBS
RATE (Oran)	Oran parametresi yapılandırma	Fabrika kullanımı için
CONFIGURE	Sistemi yapılandırma	Fabrika kullanımı için
(Yapılandırma)		

Not

- Kullanıcıların Ayar yapılandırmasına ilişkin çeşitli izinleri vardır: (a) Tarih ve Saat, dil ve iletişimi, kullanıcılar şifre gerekmeksizin kendi başlarına ayarlayabilir. (b) KULLANICI için, tek seviyeli bir şifre gerekir ve ayarın devreye alma mühendisi tarafından yapılması gerekir. (c) Akü ve SERVİS için, iki seviyeli bir şifre gerekir ve hizmet sonrası personeli tarafından ayarlanır. (d) ORAN ve YAPILANDIRMA için, üç seviyeli bir şifre gerekir ve yalnızca fabrika tarafından ayarlanır.
- "C" Amper sayısını ifade eder. Örneğin, akü 100AH ise, C = 100A'dır.

Uvarı

Menü veya izleme yazılımı aracılığıyla ayarlanan akü sayısının gerçek yerleştirilen numaraya tamamen eşit olduğundan emin olun. Aksi takdirde bu durum akülere veya ekipmana ciddi zararlar verir.

3.2.4 Günlük

afındaki)	Log	simgesine dokunun,	bö
sterildiği g	gibi Günl	lük arabirimine girer.	Ka
1 1	1 1	1 1 1 1 1	

(Ekranın alt tar ylece sistem Şekil 3-9 Günlük ayıt; olayları, ikazları ve arıza bilgilerini Menüsünde gö ve bunların meydana gelip kaybolma verilerini ve zamanını gösteren bir ters kronolojik sıra ile (yani 1. sırada olan kayıt en yeni olaydır) listelenir.

Aşağıdaki Tablo 3-7, geçmiş kayıt penceresi ve mevcut kayıt penceresi tarafından görüntülenen tüm UPS olaylarının tam listesini verir.

NO.	UPS olayları	Açıklama	
1	Fault Clear	Manuel olarak arızayı silme.	
2	Log Clear	Manuel olarak Geçmiş kaydını silme.	
3	Load On UPS	İnvertör yükü besler.	
4	Load On Bypass	By-pass yükü besler.	
5	No Load	Yük mevcut değil.	
6	Battery Boost	Şarj cihazı hızlı şarj modunda çalışıyor.	
7	Battery Float	Şarj cihazı tampon şarj modunda çalışıyor.	
8	Battery Discharge	Akü deşarj oluyor.	
9	Battery Connected	Akü bağlantılı durumda.	
10	Battery Not Connected	Akü bağlantısı yok.	
11	Maintenance CB Closed	Manuel bakım kesici kapalı.	
12	Maintenance CB Open	Manuel bakım kesici açık.	
13	EPO	Acil Durum Güç Kesme.	
		Kullanılabilir güç modülü kapasitesi yük kapasitesinden daha az.	
14	Module On Less	UPS kapasitesinin yeterince büyük olmasını sağlamak için yük	
		kapasitesini azaltın veya ekstra güç modülü ekleyin.	
15	Generator Input	Jeneratör bağlı durumda ve UPS'ye bir sinyal gönderiliyor.	
		Şebeke anormal durumda. Şebeke gerilimi veya frekansı üst veya	
16	Utility Abnormal	alt limiti aşar ve redresörün kapanmasına neden olur.	
		Redresörün giriş faz gerilimini kontrol edin.	
17	Bypass Sequence	By-pass gerilimi sırası ters durumda. Giriş güç kablolarının doğru	
	Error	bağlı olup olmadığını kontrol edin.	
		Bu alarm, by-pass geriliminin büyüklüğü veya frekansı sınırı	
		aştığında bir invertör yazılımı rutini tarafından tetiklenir. By-	
		pass gerilimi normal hale gelirse alarm otomatik olarak	
		sifirlanir.	
		Ilk olarak "bypass circuit breaker open", "Byp Sequence Err" ve	
		"Ip Neutral Lost". gibi ligili alarmin mevcut olup olmadigini	
	Demons Valt	kontrol edin. ligili bir alarm varsa, once bu alarmi silin.	
18	Bypass Volt	1. Ardindan, LCD'de goruntulenen by-pass gerilimi ve	
	Abnormal	irekansinin ayar araliginda olup olmadigini kontrol edin ve	
		Valta as" va "Outaut Eraguanav" ila halistildižini vautaavun	
		2 Gärüntülenen gerilim enermelee, gereek hu nege gerilimini ve	
		2. Ooruntuienen gerinnin anormalise, gerçek by-pass gerinmini ve	
		kontrol adin. Alarm sik sik maydana galiyaraa, hy naga jiat awar	
		avar noktasını kullanısının önarilarina göre artırmak için	
		ayar noktasını kunanıcının önernerine göre artırmak için	
		yaphandiinia yazininini kullanin	

19	Bypass Module Fail	By-pass Modülü Arızalanmış. Bu arıza, cihaz kapanana kadar kilitli kalır. Veya by-pass fanları arızalanmış.
20	Bypass Module	By-pass akımı sınırlamanın üzerindedir. By-pass akımı beyan
20	Over Load	akımın %135'inin altındaysa. UPS alarm verir, ancak herhangi bir eylem gerçekleştirmez.
21	Bypass Over Load Tout	By-pass aşırı yük durumu devam eder ve aşırı yük zaman aşımına uğrar.
22	Byp Freq Over Track	 Bu alarm, by-pass geriliminin frekansı sınırı aştığında bir invertör yazılımı rutini tarafından tetiklenir. By-pass gerilimi normal hale gelirse alarm otomatik olarak sıfırlanır. İlk olarak "bypass circuit breaker open", "Byp Sequence Err" ve "Ip Neutral Lost". gibi ilgili alarmın mevcut olup olmadığını kontrol edin. İlgili bir alarm varsa, önce bu alarmı silin. 1. Ardından, LCD'de görüntülenen by-pass frekansının ayar aralığında olup olmadığını kontrol edin ve onaylayın. Beyan frekansın sırasıyla "Output Frequency" ile belirtildiğini unutmayın. 2. Görüntülenen gerilim anormalse, gerçek by-pass frekansını ölçün. Ölçüm anormalse, harici by-pass güç kaynağını kontrol edin. Alarm sık sık meydana geliyorsa, by-pass üst sınırı ayar noktasını kullanıcının önerilerine göre artırmak için yapılandırma yazılımını kullanın.
23	Exceed Tx Times Lmt	Çıkış aşırı yük aktarımı ve yeniden aktarımı mevcut saatte ayarlanan zamanlara sabitlendiğinden yük by-pass üzerindedir. Sistem otomatik olarak toparlanabilir ve 1 saatte yeniden invertöre gecer.
24	Output Short Circuit	 Çıkış kısa devre yapmıştır. Öncelikle, yüklerde yanlış bir şey olup olmadığını kontrol edin ve onaylayın. Ardından terminallerde, soketlerde veya başka bir güç dağıtım ünitesinde bir sorun olup olmadığını kontrol edin ve onaylayın. Arıza giderildiyse, UPS'yi yeniden başlatmak için "Fault Clear" tuşuna başın
25	Battery EOD	Düşük akü gerilimi nedeniyle invertörün kapanması. Şebeke elektriği kesintisi durumunu kontrol edin ve şebeke elektriğini gecikmeden yeniden sağlayın.
26	Battery Test	Akülerin normal olup olmadığını kontrol etmek için sistem 20 saniye boyunca akü moduna aktarılır
27	Battery Test OK	Akü Testi İyi.
28	Battery	Bakım akü dizisi 1,1*EOD gerilime ulaşıncaya kadar sistemi
20	Maintenance	akü moduna geçirme.
29	Battery	Akü bakımı başarılı.
20	Maintenance OK	
30	Module inserted	Güç Modulu sisteme yerleştirilmiştir.
31	Module Exit	Guç Modulu sistemden çıkarılmıştır.
32	Keculler Fall	redresörün kapanmasına ve akünün deşarjına sebep oluyor.
33	Inverter Fail	Güç Modülü N# İnvertör Arızası. İnvertör çıkış gerilimi anormal ve yük by-pass'e aktarılıyor.
34	Rectifier Over	Güç Modülü N# Redresör Aşırı Sıcaklığı.

	Temp.	Redresör IGBT'lerin sıcaklığı, redresörün çalışmasını sürdürmek için
	-	çok yüksektir. Bu alarm, redresör IGBT'lere monte edilen sıcaklık
		izleme cihazından gelen sinyal ile tetiklenir. Aşırı sıcaklık sinyali
		kaybolduktan sonra UPS otomatik olarak eski haline döner. Asırı
		sıcaklık varsa, sunları kontrol edin:
		1 Ortam sıcaklığı cok yüksek mi?
		2 Havalandırma kanalı tikanmış mi?
		2. Fan arizasi yar mi?
		4. Ciris gorilimi ook dügük mü?
35	Fan Fail	Güc modülü N# icerisinde en az bir fan arızalı
	Output Over load	Güç Modülü N# Cıkış Aşırı Yüklenmeşi, Bu alarm, yük nominal
		değerin %100'ünün üzerine çıktığında görüntülenir. Asırı yük
		durumu kaldırıldığında alarm otomatik olarak sıfırlanır
		1. Bu alarmin doğru alun almadığını doğrulamak için I CD'de
36		aärüntülenen yükte (%) hengi fazın estri yüklendiğini kontrol edin
50		2 Du alarm dažnuka gärüntülanan dažarin dažnu alun almadičuni
		2. Bu alarin dogruysa, gorundulenen degerin dogru olup olinadigini
		dogrulamak için gerçek çıkış akimini olçun.
		Kritik olmayan yukun bagiantisini kesin. Paralel sistemde, yuk ciddi
	Inverter Overland	şekilde dengesizse bu alarm tetiklenir.
	Tout	durumu davam adar va aşırı yük zaman aşımına uğrar
	Tout	durumu devam eder ve aşırı yuk zaman aşımına ugrar.
		Oncelikle en yuksek yuklu faz aşırı yuk zaman aşımını gösterecektir.
		Zamanlayıcı aktıf olduğunda, yük nominal değerin üzerinde olduğu
		ıçın "module over load" alarmı da aktıf olmalıdır.
37		Süre dolduğunda, invertör Anahtarı açılır ve yük by-pass'e
		aktarılır.
		Yük %95'in altına düşerse, 2 dakika sonra sistem tekrar invertör
		moduna geçer. Bu alarmın doğru olup olmadığını doğrulamak için
		LCD'de görüntülenen yükü (%) kontrol edin. LCD'de aşırı yüklenme
		meydana gelirse, gerçek yükü kontrol edin ve alarm oluşmadan
		Önce UPS'de aşırı yükün olup olmadığını doğrulayın.
	Inverter Over	Güç Modülü N# Invertör Aşırı Sıcaklığı.
	Temp.	Invertörün ısı emicisinin sıcaklığı invertörün çalışmasını sürdürmek
		için çok yüksek. Bu alarm, invertör IGBT'lere monte edilen sıcaklık
		izleme cihazından gelen sinyal ile tetiklenir. Aşırı sıcaklık sinyali
		kaybolduktan sonra UPS otomatik olarak eski haline döner.
38		Aşırı sıcaklık varsa, şunları kontrol edin:
		Ortam sıcaklığı çok yüksek mi?
		Havalandırma kanalı tıkanmış mı?
		Fan arızası var mı?
		İnvertör asırı yüklenmesi zaman asımına uğramış mı?
		By-pass'ten UPS'ye (invertör) sistem geçişinin engellenmesi Şunları
39	On UPS Inhibited	kontrol edin:
		Güç modülünün kapasitesi yük için yeterince büyük mü?
		Redresör hazır durumda mı?

		By-pass gerilimi normal mi?		
40	Manual Transfer Byp	By-pass'e manuel olarak geçiş		
	Eao Morrual	"transfer to bypass manually" komutu ile çıkın. UPS manuel		
41	Esc Manual	olarak by-pass'e geçirilmişse, bu komut UPS'nin invertöre geçmesini		
	Bypass	sağlar.		
42	Battery Volt Low	Akü Gerilimi Düşük Deşarj bitmeden önce akü gerilimi düşük ikazı yapılmalıdır. Bu ön ikazdan sonra, akünün tam yük ile deşarj olması için kalan 3 dakika kapasiteye sahip olması gerekir.		
43	Battery Reverse	Akü kablolarının bağlantısı doğru değil.		
		Güç Modülü N# İnvertör Koruması.		
	t , D , ,	Şunu kontrol edin:		
44	Inverter Protect	İnvertör gerilimi anormal mi?		
		İnvertör geriliminin diğer modüllerden çok farklı mı, evet ise,		
		lütfen güç modülünün invertör gerilimini ayrı olarak ayarlayın.		
		Şebeke nötr kablosu kayıp veya algılanmamış. 3 faz UPS için,		
45	Input Neutral Lost	kullanıcının 3 kutuplu bir kesici kullanması veya giriş gücü ile UPS		
		arasında geçiş yapması önerilir.		
46	Bypass Fan Fail	En az bir by-pass modülü fanı arızalı.		
47	Manual Shutdown	Güç Modülü N# manuel olarak kapama. Güç modülü		
	M 1D (redresörü ve invertörü kapatır ve bir invertör çıkışı mevcuttur.		
48	Manual Boost Charge	Şarj cihazını manuel olarak hızlı şarj modunda çalışmaya zorlama.		
49	Manual Float Charge	Şarj cihazını manuel olarak tampon şarj modunda çalışmaya zorlama.		
50	UPS Locked	UPS güç modülünün manuel olarak kapatılması yasaktır.		
		Paralel kablo hatası. Şunları kontrol edin:		
	Parallel Cable Error	Bir veya daha fazla paralel kablo bağlı değil veya doğru		
51		bağlanmamış mı?		
		Paralel kablo dizisinin bağlantısı kopmuş mu?		
		Paralel kablo iyi durumda mı?		
53	Lost N+X Redundant	Kayıp Artık N+X Sistemde modülü besleyen X artık güç mevcut değil.		
54	EOD Sys Inhibited	Akü EOD (deşarj sonu) olduktan sonra sistemin beslenmesinin		
		engellenmesi.		
55	Battery Test Fail	Akü Testi Başarısız. UPS'nın normal olup olmadığını ve akü		
		geriliminin tampon geriliminin % 90'ından fazla olup olmadığını kontrol edin.		
		Şunları kontrol edin:		
56	Battery	UPS normal mi ve alarm veriyor mu?		
	Maintenance Fail	Akü gerilimi tampon gerilimin %90'ından fazla mı?		
	Ambient Oren	Yük %25'ın üstünde mi?		
57	Temp	düzenlemesi gereklidir.		
58	REC CAN Fail	Redresör CAN bara iletişimi anormal durumda. İletişim kablolarının		
		bağlantısının doğru olup olmadığını kontrol edin.		
59	INV IO CAN Fail	Invertör CAN barasının IO sinyali iletişimi anormal durumda. İletişim kablolarının bağlantısının doğru olup olmadığını kontrol		

		edin.
(0)	INV DATA CAN	İnvertör CAN barasının veri iletişimi anormal durumda. İletişim
60	Fail	kablolarının bağlantısının doğru olup olmadığını kontrol edin.
		İki veya daha fazla güç modülünün sistemdeki çıkış akımı sınırın
61	Power Share Fail	üzerindedir. Güç modüllerinin çıkış gerilimini ölçün ve UPS'yi
		yeniden başlatın.
		Modüller arasındaki senkronizasyon sinyali anormal durumda.
62	Sync Pulse Fail	Şunları kontrol edin:
		İletişim kablolarının bağlantısının doğru olup olmadığı.
		Güç modülü N# içerisindeki giriş gerilimi anormal durumda.
\sim	Input Volt Detect	Giriş kablolarının bağlantısının doğru olup olmadığını
03	Fail	kontrol edin.
		Giris sigortalarının kesilip kesilmediğini kontrol edin.
		Sebekenin normal olun olmadığını kontrol edin.
	D	Akü gerilimi anormal durumda.
64	Battery Volt Detect	Akülerin normal olup olmadığını kontrol edin.
	Fail	Giriş gücü kartındaki akü sigortalarının kesilip kesilmediğini kontrol edin.
65	Output Volt Fail	Çıkış gerilimi anormal durumda.
	Bypass Volt Detect	By-pass gerilimi anormal durumda.
66	Egil	By-pass kesicinin kapanmış ve iyi durumda olup olmadığını
	1'all	Kontrol edin. By-nass kablolarının bağlantısının doğruluğunu kontrol edin.
67	INV Bridge Fail	İnvertör IGBT'leri arızalanmıs ve acılmıs.
		Güç modülünün çıkış sıcaklığı sınırın üzerinde. Fanların
		anormal olup olmadığını kontrol edin.
68	Outlet Temp Error	PFC veva invertör indüktörlerinin anormal olup
		olmadığını kontrol edin.
		Hava volunun tikanın tikanmadığını kontrol edin
		Ortam sıcaklığının çok yüksek olun olmadığını kontrol edin
		Her iki faz arasındaki giris akımı farkı, beyan akımın %40'ından
		fazladır.
69	Input Curr	Redresörün sigorta, divot, IGBT veva PFC'lerinin sağlamlığını
	Unbalance	kontrol edin
		Giris geriliminin anormal olun olmadığını kontrol edin
		DC bara kapasitörlerinin gerilimi sınırın üzerinde. UPS redresörü
70	DC Bus Over Volt	ve invertörü kapatır.
		Kademeli başlatım prosedürleri tamamlanırken, DC bara
		gerilimi şebeke gerilimine göre hesaplanan sınır değerden daha
		düşüktür. Şunları kontrol edin:
	REC Soft Start	1. Redresör diyotları bozulmuş mu?
71	Fail	2. PFC IGBT'leri bozulmuş mu?
		3. PFC divotları bozulmuş mu?
		4. SCR veya IGBT sürücüleri anormal mi?
		5. Kademeli baslatım rezistansları veva röleleri anormal mi?
72	Relay Connect Fail	İnvertör röleleri açılmış ve çalışamıyor ya da sigortalar bozulmuş.
72	Relay Short	İnvertör röleleri kun devre eleve ve serkest belevere
13	Circuit	invenor roleieri kisa devre olmuş ve serbest kalamiyor.
74	PWM Sync Fail	PWM senkronizasyon sinyali anormal durumda.
75	Intelligent Sleep	UPS akıllı uyuma modunda çalışır. Bu modda güç

		modülleri sıravla beklemede kalır. Daha fazla güvenilirlik ve daha
		vüksek verimlilik sağlar. Aktif kalan güç modüllerinin kanasitelerinin
		viikii beslemeve vetecek kadar biiviik olmasi onavlanmalıdır. Calısan
		modüllərin konositələrinin kullanıcı UDS'ya daha çok yük əklədiği
		taledirda vijikiji haalamaya vataaale kadar hijvijik almaa anavlanmaleder
		takdirde yuku besiemeye yetecek kadar buyuk olmasi onaylanmandir.
		Y eni ekienen yukierin kapasiteleri belirsiz ise uykuda olan guç
		modüllerinin uyandırılması tavsiye edilir.
	Manual Transfer to	UPS'yi manuel olarak invertöre geçirmek. By-pass tazla çalıştığında
76	INV	UPS'yi invertöre geçirmek için kullanılır. Gecikme süresi 20 ms'yi
	11. , ,	aşabilir.
		Giriş aşırı akımı zaman aşımına uğrar ve UPS akü moduna
77	Input Over Curr	geçer. Giriş geriliminin çok az ve çıkış yükünün çok büyük
//	Tout	olup olmadığını kontrol edin. Giriş gerilimini mümkün olduğu
		takdirde daha fazla olacak şekilde düzenleyin veya bazı
		vüklerin bağlantısını kesin.
	No Inlet Temp.	
78	Sensor	Giriş sıcaklık sensörünün bağlantısı doğru yapılmamış.
	No Outlet Temp.	
79	Sensor	Çıkış sıcaklık sensörünün bağlantısı doğru yapılmamış.
		Giriş havası fazla sıcaklığa sahip. UPS'nin çalışma sıcaklığının
80	Inlet Over Temp.	0-40°C arasında olmasını sağlayın.
0.1	Capacitor Time	
81	Reset	DC bara kapasitorlerinin zamanlamalarinin sifirlanmasi.
82	Fan Time Reset	Fanların zamanlamalarının sıfırlanması.
82	Battery History	A tri coomio vorilorinin afutonmog
65	Reset	Aku geçiniş vemeninin sını anınası.
81	Byp Fan Time	By noss fanlarinin zamanlamalarinin sifirlanmasi
τ - υ	Reset	Dy-pass famarinin zamaniananan in familian ina.
85	Battery Over	Akü fazla sıcaklığa sahin Onsiyoneldir
05	Temp.	Tiku lazia sicakiiga sainp. Opsiyonetan.
	Bypass Fan	By-pass fanlarının çalışma ömrü sona ermiş ve fanların
86	Evpired	yenileri ile değiştirilmesi önerilmektedir. Yeni parçalar
	Бурной	yazılım ile etkinleştirilmelidir.
		Kapasitör fanlarının çalışma ömrü sona ermiş ve kapasitörlerin
87	Capacitor Expired	yenileri ile değiştirilmesi önerilmektedir. Yeni parçalar yazılım ile
		etkinleştirilmelidir.
		Güç modüllerinin fanlarının çalışma ömrü sona ermiş ve
88	Fan Expired	fanların yenileri ile değiştirilmesi önerilmektedir. Yeni parçalar
		yazılım ile etkinleştirilmelidir.
	NW ICRT Driver	İnvertör IGBT'leri kapanmış durumda.
89		Güç modüllerinin kabine doğru yerleştirilip yerleştirilmediğini kontrol
	Block	edin.
		Redresör ve invertör arasındaki sigortaların sağlamlığını kontrol edin.
		Akülerin çalışma ömrü sona ermiş ve akülerin yenileri ile
90	Battery Expired	değiştirilmesi önerilmektedir. Yeni parçalar yazılım ile
		etkinleştirilmelidir.
91	Bypass CAN Fail	By-pass modülü ve kabin arasındaki CAN barası anormal durumda.
92	Dust Filter Expired	Toz filtresi temizlenmeli veya yenisi ile değiştirilmeli.

102	Wave Trigger	Dalga biçimi UPS arızalandığı sırada kaydedilmiştir.	
		By-pass ve kabin, iletişimlerini CAN barası ile sağlamakta.	
103	Democra CAN Esti	Şunları kontrol edin	
	Dypass CAN Fair	Konnektör veya sinyal kablosu normal mi.	
		İzleme kartı normal mi.	
105	Firmware Error	Yalnızca üretici tarafından ilgilenilmeli.	
106	System Setting	Valnızca üretici tarafından ilgilenilmeli	
100	Error	i annzea urener tarannoan ngnemmen.	
107		By-pass modülü fazla sıcaklığa sahip. Şunları	
	Bypass Over	kontrol edin By-pass yükü aşırı mı.	
		Ortam sıcaklığı 40°C'nin üzerinde mi.	
	remp.	By-pass SCR'leri doğru bir araya	
		getirilmiş mi. By-pass fanları normal	
		mi.	
108	Module ID	Güç konnektörü kartındaki en az iki modülün ID'si aynı	
100	Duplicate	ayarlanmış, ID'leri doğru sırada olacak şekilde ayarlayın.	

Not

Farklı kelime renkleri farklı olay seviyelerini temsil eder:

(a) Yeşil, bir olay oluştu:

(b) Gri, bir olay oluştu ve silindi:

(c) Sarı, bir ikaz oluştu:

(d) Kırmızı, arızalar meydana geldi.

3.2.5 Operate (İşlem)

(Ekranın alt tarafındaki) simgesine dokunun, böylece sistem Şekil 3-10'da gösterildiği gibi "Operate" (İşlem) sayfasına girer.

Şekil 3-10 İşlem menüsü

"Operate" menüsü FUNCTIONBUTTON ve TESTCOMMAND'i içerir. Buradaki öğeler aşağıda detaylı bir şekilde açıklanmıştır.

FUNCTION BUTTON

• Sesli Uyarı Silme/Geri Yükleme

veya simgelerine dokunarak sistem sesli uyarısını Susturun veya Geri Yükleyin.

Arıza Temizleme

simgesine dokunarak arızaları temizleyin.

• By-pass'e Geçiş veya By-pass'ten Çıkış

veya simgelerine dokunarak by-pass moduna geçin ya da bu komutu iptal edin.

İnvertöre Geçiş

simgesine dokunarak by-pass modundan İnvertör Moduna geçin.

Modül "OFF" Düğmesini Etkinleştirme

www.vore Button simgesine dokunarak Güç Modüllerinin gücünü kesme anahtarını etkinleştirin.

• Akü Geçmiş Verilerini Silme

Reset Batiery History Dass, simgesine dokunarak akü geçmişi verilerini sıfırlayın; geçmiş verileri, deşarj zamanlarını, çalışılan gün sayısını ve deşarj saatlerini içerir.

• Toz Filtresi Kullanım Süresini Sıfırlama

simgesine dokunarak toz filtresinin zamanını sıfırlayın; bu, kullanım günlerini ve bakım periyodlarını içerir.

TEST COMMAND

• Akü Testi

simgesine dokunarak, sistemi akünün durumunu test etmesi için Akü moduna geçirin. By-pass'in normal çalıştığından ve akü kapasitesinin %25'ten fazla olduğundan emin olun.

Akü Bakım

simgesine dokunarak, sistemi Akü moduna geçirin. Bu fonksiyon, akünün bakımı için kullanılır ve kullanılması için ise by-pass'in normal olması ve akünün minimum kapasitesinin %25 olması gereklidir.

Akü Hızlı Şarj

simgesine dokunduğunuzda, sistem hızlı şarj işlemine başlayacaktır.

Akü Tampon Şarj

Battery Float simgesine dokunduğunuzda, sistem tampon şarj işlemine başlyacaktır.

Test Durdurma

÷ = V

top Test

simgesine dokunduğunuzda, sistem akü testi veya akü bakımı yapmayı durdurur.

3.2.6 Scope (Ölçek)

(Ekranın alt tarafındaki) simgesine dokunun, böylece sistem Şekil 3-11'de gösterildiği gibi Scope (Ölçek) sayfasına girer.

Şekil 3-11 Ölçek Menüsü

Kullanıcılar arabirimin sol tarafındaki ilgili simgeye dokunarak çıkış gerilimi, çıkış akımı ve by-pass gerilimi dalgalarını görüntüleyebilir. Bu dalgalar yakınlaştırılabilir veya uzaklaştırılabilir.

•

3 fazlı çıkış gerilimini görüntülemek için simgeye dokunun.

I

3 fazlı çıkış akımını görüntülemek için simgeye dokunun.

3 fazlı by-pass gerilimini görüntülemek için simgeye dokunun.

- Zoom In

Dalgayı yakınlaştırmak için simgeye dokunun.

Dalgayı uzaklaştırmak için simgeye dokunun.

4 İşlemler

4.1 UPS'nin Çalışma Başlangıcı

4.1.1 Normal Modda Başlatma

UPS, kurulumun tamamlanmasından sonra devreye alma mühendisi tarafından başlatılmalıdır. Aşağıdaki adımlar izlenmelidir:

- Tüm devre kesicilerin açık olmasını sağlayın. 1)
- Çıkış kesiciyi (Q4), giriş kesiciyi (Q1), bypass giriş kesicisini (Q2) tek tek açın ve ardından 2) sistem açılmaya başlar (4 yuvalı kabin ve 6 yuvalı kabin yalnızca manuel by-pass kesiciye sahiptir, bu nedenle harici devre kesiciler kullanmanız gerekir).
- Kabinin ön tarafındaki LCD yanar. Sistem, Şekil 3-2'de de gösterildiği gibi ana sayfaya 3) girer.
- 4) Ana sayfadaki enerji çubuğunu gözden kaçırmayın ve LED göstergelerine dikkat verin. Redresörün yanıp sönmesi, redresörün çalışmaya başladığını gösterir. LED göstergeleri aşağıda Tablo 4.1'de listelenmiştir.

Gösterge	Durum	Gösterge	Durum
Redresör	yeşil yanıp sönme	İnvertör	kapalı
Akü	kırmızı	Yük	kapalı
By-pass	kapalı	Durum	kırmızı

Table 4 1 Podrosörün calısmaya başlamaşı

5) 30 saniyeden sonra redresör göstergesi sabit yeşil renkte yanmaya başlar ve doğrultum işleminin sonlandırılmasını ifade eder ve by-pass statik anahtarı kapanıp invertör çalışmaya başlar. LED göstergeleri aşağıda Tablo 4.2'de listelenmiştir.

Gösterge	Durum	Gösterge	Durum
Redresör	yeşil	İnvertör	yeşil yanıp sönme
Akü	kırmızı	Yük	yeşil
By-pass	yeşil	Durum	kırmızı

Tablo 4-2 İnvertörün calışmaya haşlamaşı

6) İnvertör normale döndükten sonra UPS by-pass'tan invertöre geçiş yapar. LED göstergeleri aşağıda Tablo 4-3'de listelenmiştir.

Tablo 4-3 Yükün beslenmesi						
Gösterge	Durum	Gösterge	Duru			
			m			
Redresör	yeşil	İnvertör	yeşil			
Akü	kırmızı	Yük	yeşil			
By-pass	kapalı	Durum	kırmız			
			1			

7) UPS Normal Moddadır. Akü devre kesicileri kapadığınızda, UPS aküyü şarj etmeye başlar. LED göstergeleri aşağıda Tablo 4.4'de listelenmiştir.

Gösterge	Durum	Gösterge	Durum
Redresör	yeşil	İnvertör	yeşil
Akü	yeşil	Yük	yeşil
By-pass	kapalı	Durum	yeşil

Table 4 4 No

Not

- Sistem çalışmaya başladığında, kaydedilen ayarlar yüklenir.
- Kullanıcılar, başlatma işlemi sırasında Log (Günlük) menüsünü kontrol ederek tüm olaylara göz atabilirler.
- Kullanıcılar, güç modülü bilgilerini önündeki tuşlardan kontrol edebilirler.

4.1.2 Akü ile Başlatma

Akü ile başlatma, akü soğuk başlatma işlemini ifade eder. Çalışmaya başlama aşamaları aşağıdaki şekildedir:

- 1) Akünün bağlantısının doğru şekilde yapıldığını doğrulayın; harici akü devre kesicileri açın.
- 2) Akünün soğuk çalıştırılması için (Şekil 4-1'de gösterildiği gibi) kırmızı düğmeye basın. Sistem, bu işlem sonrasında aküden beslenecektir.

Şekil 4-1 Akü soğuk başlatma düğmesinin konumu

- 3) Bunun sonrasında, sistem kısım 4.1.1'deki 3. adımı izleyerek çalışmaya başlar ve 30 saniye içerisinde akü moduna geçiş yapar.
- 4) Yükü beslemek için harici güç kaynağı izolasyonunu açtığınızda, sistem akü modeli üzerinden çalışacaktır.

📄 Not

Akü soğuk başlatma fonksiyonu 2 yuvalı kabin ve 4 yuvalı kabin için opsiyonelken 6 yuvalı kabin ve 10 yuvalı kabin için standarttır.

4.2 Çalışma Modları Arasında Geçiş Yapmaya İlişkin Prosedür

4.2.1 UPS'yi Normal Moddan Akü Moduna Geçirme

UPS, şebeke (şebeke gerilimi) arızalandıktan hemen sonra Akü modeline geçer veya önceden belirlenen sınırın altına düşer.

4.2.2 UPS'yi Normal Moddan By-pass Moduna Geçirme

- Operate menüsüne girip "transfer to bypass" simgesine dokunduğunuzda sistem by-pass moduna geçecektir.
- Operatör kontrol panelindeki BYP tuşuna iki saniyeden uzun süre basılı tuttuğunuzda sistem bypass moduna geçecektir. Bu ön kapının arka tarafındaki anahtarı etkinleştirmelidir. Şekil 4.2'de görüldüğü gibi.

Şekil 4.2 Anahtarın etkinleştirilmesi

By-pass moduna geçmeden önce by-pass'in normal çalıştığından emin olun. Aksi takdirde bunu yapmanız arızaya sebep olabilir.

4.2.3 UPS'yi By-pass Modundan Normal Moda Geçirme

UPS'yi By-pass Modundan Normal moda aktarmanın iki yolu:

(a) Operate menüsüne girip transfer to inverter singesine dokunduğunuzda sistem Normal moda geçecektir.

(b) Operatör kontrol panelindeki INV tuşuna iki saniyeden uzun süre basılı tuttuğunuzda sistem Normal mod geçecektir.

Not

Normalde, sistem Normal moda kendiliğinden geçiş yapar. Bu fonksiyon, by-pass frekansı aşıldığında ve sistemin manuel olarak Normal moda geçmesi gerektiğinde kullanılır.

4.2.4 UPS'yi Normal Moddan Bakım By-pass Moduna Geçirme

Aşağıdaki prosedürler yükü UPS invertör çıkışından bakım için kullanılan bakım by-pass kaynağına aktarabilir.

- 1) Kısım 5.2.2'yi takip ederek UPS'yi By-pass moduna geçirme
- 2) İnvertör gösterge LED'i söner, durum gösterge LED'i söner, sesli alarm aktif olur, invertör kapanır. By-pass yüke güç besler.
- 3) Harici akü kesicisini kapatın ve bakım by-pass kesicisini açın. Bunu yaptığınızda yük bakım by-pass ve statik by-pass ile beslenir.
- 4) Giriş kesiciyi (Q1), bypass giriş kesicisini (Q2) Çıkış kesiciyi (Q4), tek tek sırayla kapatın ve bunun ardından sistem kapanacaktır (4 yuvalı kabin ve 6 yuvalı kabin yalnızca manuel bypass kesiciye sahiptir, bu nedenle harici devre kesiciler kullanmanız gerekir). Bakım by-pass'i yüke güç besler.

📄 Not

- 2 yuvalı kabin ve 6 yuvalı kabin yalnızca manuel by-pass kesicisine sahiptir. Manuel by-pass modunda (manuel by-pass yüklere güç besler), terminalde ve dahili Bakır çubukta tehlikeli gerilimler mevcuttur.
- 2 yuvalı kabinler ve 6 yuvalı kabinler için harici devre kesiciler gereklidir. (buna harici giriş kesici, harici by-pass giriş kesici, harici çıkış kesici ve harici bakım by-pass kesicisi dahildir).

Bu işlemi gerçekleştirmeden önce, yük beslemesinde kısa bir kesinti riskini ortadan kaldırmak için by-pass beslemesinin düzenli olduğundan ve sürücünün onunla senkronize olduğundan emin olmak için LCD ekrandaki mesajları okuyun.

Güç modülünün bakımı gerekliyse, kapağı çıkarmadan önce DC bara kapasitörünün tamamen deşarj olması için 10 dakika bekleyin.

4.2.5 UPS'yi Bakım By-pass Modundan Normal Moda Geçirme

Aşağıdaki prosedürler ile yük Bakım By-pass'ten invertör çıkışına aktarılabilir.

- 1) Çıkış kesiciyi (Q4), giriş kesiciyi (Q1), bypass giriş kesicisini (Q2) sırasıyla tek tek açın ve ardından sistem açılmaya başlar.
- 2) 30 saniye geçtiğinde statik by-pass açılır, by-pass gösterge LED'i yeşil yanar ve yük, bakım by-pass ve statik by-pass ile beslenir.
- 3) Harici akü kesicisini açın.
- 4) Bakım by-pass kesicisini kapattığınızda, yük statik by-pass ile beslenecektir.
- 5) 30 saniye sonra, redresör çalışmaya başlar, redresör gösterge LED'i yeşil yanar ve sonrasında da invertör çalışmaya başlar.
- 6) 60 saniye geçtiğinde, sistem Normal moda geçiş yapar.

📄 Not

2 yuvalı kabin ve 6 yuvalı kabin için işlemde, bölüm 5.3.2'ye başvurun.

4.3 Akü Kılavuzu

Akü uzun süre kullanılmadıysa, akünün durumunun test edilmesi gerekir. Bunun için iki yöntem mevcuttur:

1) Manuel Deşarj testi. Şekil 4-3'te gösterildiği şekilde Operate menüsüne girin ve "Battery

maintenance (Akü bakımı)" simplesine dokunun, sistem deşarj için Akü moduna geçecektir. Akü %20 kapasiteye sahip olduğunda veya düşük gerilim<u>e</u> sahip olduğunda

sistem deşarjı durduracaktır. Kullanıcılar deşarj işlemini "Stop Test" simgesine dokunarak da durdurabilirler.

Şekil 4-3 Akü Bakımı

- 2) Otomatik deşarj. Sistemler, ayarlar yapıldığı takdirde akülerin bakımını otomatik olarak yapabilirler. Ayar prosedürü aşağıdaki şekildedir.
 - (a) Akü otomatik deşarjını etkinleştirin. Setting menüsünün "CONFIGURE" sayfasına girin, "Battery Auto Discharge" seçeneğini çentiği tıklayarak onaylayın (Bu işlemin fabrika tarafından gerçekleştirilmesi gereklidir).
 - (b) Akü otomatik deşarjı için periyod ayarı. Setting menüsünün "BATTERY" sayfasına girin (Bkz. Şekil 4-4). "Auto Maintenance Discharge Period" öğesine periyod süresini girin ve onaylayın.

		×
Battery Number		DATE & TIME
Battery Capacity	AH	
Float Charge Voltage / Cell	V	LANGUAGE
Boost Charge Voltage / Cell	v	сомм.
EOD Voltage / Cell, @ 0.6C Current	V	
EOD Voltage / Cell, @ 0.15C Current	V	USER
Charge Current Percent Limit	%	BATTERY
Battery Temperature Compensate	mV/°C	
Boost Charge Time Limit	Hour	SERVICE
Auto Boost Period	Hour	
Auto Maintenance Discharge Period 6480	Hour	RATE
Please Confirm Settings	×	CONFIGURE
Home Cabinet Module Setting	Oper	ate Scope

Şekil 4-4 Akü otomatik deşarjı için periyod ayarı

Uyarı

Otomatik bakım deşarjı için yük %20-%100 arasında olmalıdır, aksi takdirde sistem işlemi otomatik olarak başlatmaz.

4.4 EPO

Operatör kontrolü ve ekran panelinde (yanlış çalıştırmayı önlemek için bir kapak ile beraber, bkz. Şekil 4-5) bulunan EPO düğmesi, acil durumlarda (örn. yangın, sel, vb.) UPS'yi kapatmak

için tasarlanmıştır. Bunu gerçekleştirmek için, yalnızca EPO düğmesine bastığınızda sistem redresör ile invertörü kapatır ve derhal yükü beslemeyi keser (invertör ve by-pass dahil) ve akü şarjı ve deşarjı durdurur.

Giriş şebekesi mevcutsa, UPS kontrol devresi aktif kalacaktır; ancak, çıkış kapatılacaktır. UPS'yi tamamen izole etmek için, kullanıcıların UPS'ye giden harici şebeke giriş beslemesini kapatmaları gerekir. Kullanıcılar UPS'ye tekrar güç vererek UPS'yi yeniden başlatabilir.

1 Uyarı

EPO tetiklendiğinde, yük UPS tarafından beslenmeyecektir. EPO fonksiyonunu kullanırken dikkatli olun.

Şekil 4-5 EPO Düğmesi

4.5 Paralel Çalışma Sisteminin Kurulumu

UPS sistemi paralel şekilde üç kabine sahip olabilir.

İki UPS kabininin bağlantısı, Şekil 4-6'da gösterildiği şekilde oluşturulur.

Şekil 4-6 Paralellik şeması

2 yuvalı kabinin ve 6 yuvalı kabinin paralel arabirimleri kabinin ön panelinde, 10 yuvalı kabinin arabirimleri ise kabinin içinde bulunur, bu arabirimleri kabini açarak görebilirsiniz. Paralel terminal Şekil 4-7'de gösterilmiştir.

(a) 2 yuvalı kabin ve 6 yuvalı kabinin paralel arabirimleri

(b) 10 yuvalı kabinin paralel arabirimleri

Şekil 4-7 Paralel arabiriminin yeri

Paralel çalışma için kontrol kabloları, Şekil 4-8'de gösterildiği gibi kapalı bir döngü oluşturmak için tüm tek cihazlarla bağlanmalıdır.

Şekil 4-8 Paralel bağlantısı

Paralel çalışma hakkında daha fazla ayrıntı için, "Paralel Çalışmaya İlişkin Rehber"e bakın.

5 Bakım

Bu bölümde, güç modülü, izleme ünitesi ve by-pass ünitesinin bakım talimatları ve toz filtresinin değiştirilmesi yöntemi dahil olmak üzere UPS bakımı anlatılmaktadır.

5.1 Önlemler

Yalnızca bakım mühendisleri güç modülü, izleme ünitesi ve by-pass ünitesi üzerinde bakım yapabilir.

- 1) Güç modülü, kabinin yüksek ağırlık merkezinden kaynaklanan herhangi bir eğimi önlemek için yukarıdan aşağıya doğru sökülmelidir.
- 2) Güç modülü ve izleme ünitesi üzerinde bakım yapmadan önce güvenliği sağlamak için, gerilimin tehlikeli gerilimden, yani DC geriliminin 36 Vdc'den ve AC maksimum geriliminin 30 Vac'den düşük olması, daha düşük olduğundan emin olmak için çalışan parçalar ile toprak arasındaki gerilimi ölçmek için bir multimetre kullanın.
- Hot swap için izleme ünitesi ve by-pass ünitesinin kullanılması önerilmez; yalnızca UPS Bakım By-pass Modunda veya UPS tamamen kapalı olduğunda, izleme ünitesi ve by-pass ünitesi sökülebilir.
- 4) Kabinden çıkardıktan sonra güç modülünün kapağını açmadan önce 10 dakika bekleyin.

5.2 Güç Modülünün Bakımına İlişkin Rehber

Onarılması gereken güç modülünü çıkarmadan önce UPS'nin Normal Modda çalıştığından ve bypass'in normal şekilde çalıştığından emin olun.

- 1) Geride kalan güç modülünün aşırı yüklenmeyeceğinden emin olun.
- 2) Güç modülünün gücünü kesin:
 - a) Etkinleştirin. LCD paneli ->Menü Operate Menüsü -> Enable Module "OFF" simgesi
 - b) Güç modülü panelindeki "OFF" düğmesine 3 saniye basın, güç modülü sistemden çıkacaktır.
- Güç modülünün önündeki iki tarafta yer alan montaj vidalarını sökün ve güç modülünü iki kişi ile çıkarın.
- 4) Onarmak için kapağı açmadan önce 10 dakika bekleyin.
- 5) Onarım tamamlandıktan sonra, güç modülünü kasaya ittiğinizde güç modülü otomatik olarak sisteme katılacaktır.

5.3 İzleme Ünitesi ve By-pass Ünitesinin Bakımına Yönelik Rehber

5.3.1 2 Yuvalı Kabin İçin İzleme Ünitesi ve By-pass Ünitesinin Bakımı

UPS'nin Normal modda çalıştığını ve by-pass'in normal çalıştığını doğrulayın

- 1) Sistemi LCD kontrol panelinden by-pass moduna aktarın (bkz. Bölüm 4.2.2).
- 2) Bakım by-pass kesicisini açın. Bunu yaptığınızda yük bakım by-pass ve statik by-pass ile beslenecektir.
- Akü kesici, giriş kesici, by-pass giriş kesiciyi ve çıkış kesiciyi tek tek sırayla kapatın. Yük, bakım by-pass'inden beslenecektir.
- 4) İzleme ünitesini ve by-pass ünitesine yakın olan iki güç modülünü çıkarın, bu modüller izleme ve by-pass ünitesinin onarımı için alınabilir.
- 5) Bakım tamamlandıktan sonra, güç modülünü takın ve güç modülünün her iki tarafındaki vidaları sıkın.
- 6) Çıkış kesiciyi, by-pass giriş kesici, giriş kesici ve akü kesiciyi sırayla tek tek açın.
- 7) 2 dakika sonra by-pass gösterge LED'i yeşil yanar ve yük, bakım by-pass'i ve

statik by-pass ile beslenir.

- 8) Bakım by-pass kesicisini kapatın.
- 30 saniye sonra, redresör çalışmaya başlar, redresör gösterge LED'i yeşil yanar ve sonrasında da invertör çalışmaya başlar.
- 10) 60 saniye geçtiğinde, sistem Normal moda geçiş yapar.

5.3.2 4 Yuvalı Kabin ve 6 Yuvalı Kabin İçin İzleme Ünitesi ve By-pass Ünitesinin Bakımı

UPS'nin Normal modda çalıştığını ve by-pass'in normal çalıştığını doğrulayın

- 1) Sistemi LCD kontrol panelinden by-pass moduna aktarın (bkz. Bölüm 4.2.2).
- 2) Manuel by-pass kesicisini açın.
- 3) Harici bakım by-pass kesicisini açın.
- 4) Akü kesici, harici giriş kesici, harici by-pass giriş kesici ve harici çıkış kesiciyi tek tek sırayla kapatın. Yük, harici bakım by-pass'inden beslenecektir.
- İzleme ünitesine ve by-pass ünitesine yakın olan iki güç modülünü çıkarın (4 yuvalı kabin). By-pass ünitesinin üzerindeki paneli çıkarın (6 yuvalı kabin), bunlar izleme ve by-pass ünitesinin onarımı için alınabilirler.
- 6) Bakım tamamlandıktan sonra, güç modülünü takın ve güç modülünün her iki tarafındaki vidaları sıkın.
- 7) Harici çıkış kesiciyi, harici by-pass giriş kesici, harici giriş kesici ve akü kesiciyi sırayla tek tek açın.
- 8) 2 dakika sonrasında, by-pass gösterge LED'i yeşil yanar ve yük, harici bakım by-pass'i, manuel by-pass ve statik by-pass ile beslenir.
- 9) Harici bakım by-pass kesiciyi kapatın. Bunu yaptığınızda yük manuel by-pass ve statik by-pass ile beslenecektir.
- 10) Manuel by-pass kescisini kapatın.
- 30 saniye sonra, redresör çalışmaya başlar, redresör gösterge LED'i yeşil yanar ve sonrasında da invertör çalışmaya başlar.
- 12) 60 saniye geçtiğinde, sistem Normal moda geçiş yapar.

5.3.3 10 Yuvalı Kabin İçin İzleme Ünitesi ve By-pass Ünitesinin Bakımı

UPS'nin Normal modda çalıştığını ve by-pass'in normal çalıştığını doğrulayın

- 1) Sistemi LCD kontrol panelinden by-pass moduna aktarın (bkz. Bölüm 4.2.2).
- Bakım by-pass kesicisini açın. Bunu yaptığınızda yük bakım by-pass ve statik by-pass ile beslenecektir.
- Akü kesici, giriş kesici, by-pass giriş kesiciyi ve çıkış kesiciyi tek tek sırayla kapatın. Yük, bakım by-pass'inden beslenecektir.
- 4) İzleme ünitesinin üzerindeki paneli çıkarın, böylece izleme ünitesinin onarımı gerçekleştirilebilir.
- 5) By-pass ünitesinin üzerindeki paneli ve kabinin sağ kapı panelini çıkarın ve by-pass ünitesinin onarımını gerçekleştirin.
- 6) Bakımın tamamlanmasından sonra, paneli yerleştirin ve vidalarını sıkın.
- 7) Çıkış kesiciyi, by-pass giriş kesici, giriş kesici ve akü kesiciyi sırayla tek tek açın.
- 8) 2 dakika sonrasında, by-pass gösterge LED'i yeşil yanar ve yük, bakım by-pass'i ve statik by-pass ile beslenir.
- 9) Bakım by-pass kesicisini kapatın.
- 30 saniye sonra, redresör çalışmaya başlar, redresör gösterge LED'i yeşil yanar ve sonrasında da invertör çalışmaya başlar.
- 11) 60 saniye geçtiğinde, sistem Normal moda geçiş yapar.

5.4 Akü Ayarı

Akü ayarının, ilk kez güç kesimi veya aküler üzerinde yapılan herhangi bir değişiklikten sonra gerçekleştirilmesi gereklidir.

Akü yapılandırma rasyonu LCD kontrol paneli (Şekil 5-1) veya izleme yazılımı (Şekil 5-2) üzerinden yapılabilir.

Şekil 5-1 LCD kontrol paneli üzerinden yapılandırma

MainIpData	System Setting Battery Setting Customization	WarningSet DryContactSe	et	
BatteryData		-		^
CabStatus	Battery Type	VELA.	VRLA	
UnitStatus	Battery Number	32	40 💌	
HisLogDown	Battery AH	100		
RateSetting	Float Charge Voltage/Cell(V)	2.28	2.25	
ServSetting	Boost Charge Voltage/Cell(V)	2.30	2.35	
DetectAdjust ControlCmd	EOD Voltage/Cell, @ 0.6C Current(V)	1.65	1.65	
FwProgram	EOD Voltage/Cell, @ 0.15C Current(V)	1.75	1.75	-
About			Set	
UPS type RMK020.	606kVA) - Protocol MODBUS_ASCE	Address 1		6
Baud rate 9600	Port No. COMS	Disconnect		

Şekil 5-2 İzleme yazılımı ile yapılandırma

5.4.1 Akü Türü Ayarı

Akü türü yalnızca izleme yazılımı aracılığıyla ayarlanabilir. Şu anki sistem kurşun asitli akü ve Lityum demir fosfat aküyü (LFPB) desteklemektedir.

5.4.2 Akü Sayısı Ayarı

1) Kurşun Asitli akü için akü sayısını ayarlama

Bir akü bloğunun nominal gerilimi 12V'dir ve her akü bloğu için 6 hücre (her biri 2V) barındırır. Şekil 5-1'de gösterildiği gibi ayar için akü sayısı 40 ise, bu 40 akü bloğunun mevcut olduğu ve pozitif ve negatif olarak 20 akü bloğunun bulunduğu anlamına gelir. 2V (genellikle büyük kapasiteli) akü hücresi kullanılıyorsa, akü sayısı blok akü aynı olmalıdır. Aslında kullanılmakta olan hücreli akü, 120 hücrenin hem pozitif hem de negatif olduğu 240 hücreli (6 x 40) akü olmalıdır. Akü sayısı ayar aralığı 36-44'tür.

2) LFPB için pil sayısını ayarlama

Her LFPB'nin hücresi için hücre gerilimi 3.2V'tur, her akü bloğu ise 1 hücreden oluşur. Toplamda, 40 blok Kurşun Asitli akü kullanılıyorsa, LFPB için bu sayı 150 olacaktır. Hem pozitif hem de negatif 75 hücreye denk gelecektir.

Akü sayısı ayar aralığı 140-180'dir. LFPB için en düşük EOD gerilimi 360V ve en yüksek gerilim 620V olabilir.

5.4.3 Akü Kapasitesi Ayarı

Akü Kapasite Ayarı akü bloğunun kapasite değerini ayarlar. Örneğin, sistem 40 12V/100AH değerli bloğa sahip akü kullanıyorsa Akü Kapasite Ayarı 100 Ah olarak ayarlanmalıdır. 240 adet 2V/1000AH hücre kullanılıyorsa, Akü Kapasitesi Ayarı 1000 Ah olarak ayarlanmalıdır. Paralel olarak birden fazla akü dizisi olması durumunda, akü kapasitesi ayar değeri tek akü

Paralel olarak birden fazla akü dizisi olması durumunda, akü kapasitesi ayar değeri tek akü dizisinin katları olacaktır. Örneğin, yapılandırma 12V/100AH akülerden oluşan 40 blokluk iki dizeyse, akü kapasitesi ayarı 200AH olarak ayarlanmalıdır.

Sistem akım sınırlarını ayarlanan akü kapasitesine göre belirler. Kurşun Asitli akü için akım sınırı 0.2C'dir ve LFPB için akım 0.3C'dir. Örneğin, 500kVA, 160A'lık toplam maksimum şarj akımı sağlayabilen 40 blok 12V/500AH akü için yapılandırılmıştır. Akım sınırları (0.2C) nedeniyle, maksimum şarj akımı 100A (0.2 * 500A) olacaktır.

5.4.4 Tampon ve Hızlı Şarj Ayarı

Hızla şarj işleminde, sistem aküleri sabit akımla şarj eder. Periyodun bitmesinden sonra, sistem tampon şarjına geçecektir.

Kurşun Asitli akü için, hücre başına varsayılan tampon şarj gerilimi 2.25V, hızlı şarj gerilimi ise 2.35V'tur:

LFPB için, hücre başına varsayılan tampon ve hızlı şarj gerilimi 3.45V'tur.

5.4.5 EOD Gerilim Ayarı

Deşarj akımı 0.6C'den büyük olduğunda EOD gerilimi 0.6C, EOD gerilim değeri olur. Deşarj akımı 0.15C'den düşük olduğunda EOD gerilimi değeri 0.15C olur. EOD gerilimi, Şekil 5.3'te gösterildiği gibi EOD gerilimi Akım 0.15C ve 0.6C'den arttıkça doğrusal olarak azalır.

Kurşun Asitli akü için, hücre geriliminin 0.6C'de 1.65V/hücreye, 0.15C'de 1.75V'a ayarlanması önerilir.

LFPB akü için ise, hücre geriliminin hem 0.6C hem de 0.15C'de 2.7V/hücreye ayarlanması önerilir.

5.4.6 Şarj Akımı Yüzde Sınırı

Bu ayar şarj gücünü sınırlamak içindir, maksimum akım sınırı beyan aktif gücün %20'si olabilir. Bir güç modülünün akım sınırına göre verebileceği maksimum akım (yüzde olarak) Tablo 5-1'de gösterilmektedir.

Tablo 5-1 Güç modülü başına akım sınırı				
Akım sınırı (%)	Maks. şarj akımı (A)			
	40KVA güç modülü	50KVA güç modülü		
1	0.7	0.8		
2	1.2	1.6		
3	1.9	2.4		
4	2.5	3.2		
5	3.1	4.0		
6	3.7	4.8		
7	4.4	5.6		
8	5.1	6.4		
9	5.6	7.2		
10	6.3	8.0		
11	6.9	8.8		
12	7.5	9.6		
13	8.1	10.4		
14	8.8	11.2		
15	9.3	12.0		
16	10.0	12.8		
17	10.7	13.6		
18	11.2	14.4		
19	11.9	15.2		
20	12.5	16.0		

Gerçek şarj akımı ayrıca akü kapasitesiyle de sınırlıdır. Bölüm 5.4.3'e bakın.

5.4.7 Akü Sıcaklığı Kompanzasyonu

Bu, sıcaklık kompanzasyonu katsayısını ayarlamak içindir. 25°C temel alınmıştır, sıcaklık bu değerden daha yüksek olduğunda, deşarj gerilimi düşer; sıcaklık bu değerden düşük olduğunda ise, deşarj gerilimi yükselir.

5.4.8 Hızlı Şarj Süre Sınırı

Bu, Hızlı Şarj süresini ayarlamak içindir. Hızlı şarjın süresi dolduğunda sistem tampon şarja geçiş yapar. Ayar aralığı 1-48 saat olabilir.

5.4.9 Otomatik Hızlandırma (Boost) Periyodu

Bu, Otomatik hızlandırma periyodu süresini ayarlamak içindir. Sistem Otomatik hızlandırma periyoduna girdiğinde, aküyü hızlı şarj eder. Akünün her üç ayda bir hızlı şarj edilmesi ve periyodun 4320 saat olarak ayarlanması tavsiye edilir.

5.4.10 Otomatik Bakım Deşarj Periyodu

Otomatik bakım deşarj periyoduna ulaşıldığında sistem aküyü deşarj eder. Bu fonksiyon, Şekil 5-4'te gösterildiği gibi izleme yazılımı aracılığıyla AutoMaint'in (Rate Setting-> SysCodeSetting1) kontrol edilmesi ile etkinleştirilmelidir.

			CHS		ENGLISH		
Home 🗠	RateSettings				Syscode Setting1		
MainInData	InputVolt		220	-	a subsection of the second second		
OutputData	InputFreq		50	-	🔲 Derate(0)	📕 FreqSelfAdpt(6)	🔲 Inhihil Adj(C)
BatteryData	OutputVolt		220	-	📕 33/31(l)	LogoType(7)	📕 DoBusLevel(D)
CabStatus	OutputFrea	-	50	-	AutoBoost(2)	📕 RecCirWay(3)	🔳 PFExterns(E)
HisLogDown		1	1		AutoMaint(3)	📕 PFFlag(9)	Received(F)
SCodeDown					🔳 RanOrHt(4)	📕 AllowDeOvRat()	V
RateSetting					NotTxTLmt(5)	📕 OvLdToutEzt(B)	Set by bit
DetectAdjust							
ControlCmd						Set	
FwProgram							
UPS type RMX(20-60	0kVA) 👻 I	Protocol	MODBU	S_ASCII	 Address 1 		5
Baud rate Auto	_ 1	Port No.]	- Con	nect	20

Şekil 5-4 Otomatik bakım Deşarj periyodunun etkinleştirilmesi

Otomatik bakım Deşarjının EOD gerilimi, normal EOD geriliminin 1.05 katıdır.

5.4.11 Akü ve Ortam Sıcaklığı Aşırı Artışına Yönelik İkazlar

Bu fonksiyon izleme yazılımı ile ayarlanabilir. Sistem akü ve ortamın sıcaklık bilgilerini okuyacak ve aşırı ısınma ikazı verecektir. Ayar aralığı 25-70 °C'dir.

Sıcaklık sensörü Kuru Kontak üzerinden yerleştirilmelidir.

5.5 Toz Filtresi Değişimi (opsiyonel)

UPS'nin ön kapağının arkasında 3~4 toz filtresi mevcuttur, filtreler her iki yanlarında bulunan birer braketle yerinde tutulur. Her filtrenin değiştirilme prosedürü aşağıdaki gibidir:

- 1. Ön kapağı açın ve ön kapağın arka tarafındaki filtreleri bulun.
- 2. Bir braketi sökün.
- 3. Değiştirilecek olan toz filtresini sökün ve temizini yerleştirin.
- 4. Braketi yeniden takın.

6 Ürün Özellikleri

Bu bölüm, çevresel karakteristikler mekanik karakteristikler ve elektriksel karakteristikler dahil olmak üzere ürünün özelliklerini sağlar.

6.1 Geçerli Standartlar

UPS, aşağıdaki Avrupa standartları ve uluslararası standartlara uyacak şekilde tasarlanmıştır:

Öğe	Normatif referans
Operatör erişim alanlarında kullanılan UPS için genel güvenlik gereklilikleri	EN50091-1-1/IEC62040-1-1/AS 62040-1-1
UPS için Elektromanyetik uyumluluk (EMC) gereklilikleri	EN50091-2/IEC62040-2/AS 62040-2 (C3)
UPS'in performans ve test gereksinimlerini belirleme yöntemi	EN50091-3/IEC62040-3/AS 62040-3 (VFI SS 111)

Tablo 6-1: Avrupa	Standartları v	e Uluslararası	Standartlar ile	Uyumluluk
- 1				2

Not

Yukarıda belirtilen ürün standartları güvenlik için genel IEC ve EN standartlarına (IEC/EN/AS60950), elektromanyetik emisyon ve bağışıklığa (IEC/EN/AS61000 serisi) ve yapıya (IEC/EN/AS60146 serisi ve 60950) ilişkin uyumluluk hükümlerini içerir.

6.2 Çevresel Karakteristikler

Tablo 6-2	Çevresel Kara	kteristikler	
		~	_

Öğe	Birim	Gereklilikler
1 metrede akustik gürültü seviyesi	dB	%100 yükte 65dB, %45 yükte 62 dB
Çalışma Yüksekliği	m	≤1000m yükseklikte, 1000m ile 2000m arasında her 100 metrede bir %1 güç düşmesi
Bağıl Nem	%RH	0-95, yoğuşmasız
Çalışma Sıcaklığı	°C	0-40, Akü ömrü 20 °C'nin üzerindeki her 10° C artışta yarıya iner
UPS Depolama	°C	-40-70
Sıcaklık		
Tavsiye edilen	°C	-20~30
akü depolama sıcaklığı	C	-20 30
6.3 Mekanik Karakteristikler

Model	Birim	2 yuvalı Kabin	4 yuvalı Kabin	6 yuvalı Kabin	10 yuvalı Kabin
Mekanik Boyut (E*B*Y)	mm	600*980*1150	650*960*1600	650*970*2000	1300*1100*2000
Ağırlık	kg	120	170	220	450
Renk	Yok	Siyah			
Koruma Seviyesi, (IEC60529)	Yok	IP20			

Tablo 6-3 Kabine ilişkin Mekanik Karakteristikler

Tablo 6-4 Güç modülüne yönelik mekanik

karakteristikler

Model	Birim	40KVA güç modülü	50KVA güç modülü
Mekanik Boyut (E*B*Y)	mm	510*700*178	510*700*178
Ağırlık	kg	44	45

6.4 Elektriksel Karakteristikler

6.4.1 Elektriksel Karakteristikler (Giriş Redresörü)

Tablo	6-5	Redresör	AC girisi	(Sebeke)
rubio	00	100010001	rie gingi	(QCOCKC)

Öğe	Birim	Parametre
Şebeke Sistemi	\	3 Faz + Nötr + Toprak
Beyan AC Giriş Gerilimi	Vac	380/400/415 (üç fazlı ve by-pass girişi ile nötr paylaşım)
Beyan Frekans	Vac	50/60Hz
Giriş gerilimi aralığı	Vac	304~478Vac (Hat-Hat), tam yük 228V~304Vac (Hat-Hat), minimum faz gerilimine göre yük doğrusal olarak azalır
Giriş Frekansı Aralığı	Hz	40~70
Giriş Güç faktörü	PF	>0.99
THDI	%THDI	<%3 (tam doğrusal yük)

Öğeler	Birim	Parametreler
Akü bara gerilimi	Vdc	Beyan: +240V
Kurşun asitli hücrelerin miktarı	Nominal	40=[1 akü(12V)] ,240=[1 akü(2V)]
Tampon şarj gerilimi	V/hücre (VRLA)	2.25V/hücre (2.2V/hücre [~] 2.35V/hücre arasından seçilebilir) Sabit akım ve sabit gerilim şarj modu
Sıcaklık kompanzasyonu	mV/°C/cl	3.0(seçilebilir:0~5.0)
Dalgalanma gerilimi	%	<u>≤1</u>
Dalgalanma akımı	%	_≤5
Dengelenmiş şarj gerilimi	VRLA	2.4V/hücre (2.30V/hücre~2.45V/hücre arasında seçilebilir) Sabit akım ve sabit gerilim şarj modu
Son deşarj gerilimi	V/hücre (VRLA)	1.65V/hücre (1.60V/hücre~1.750V/hücre arasında seçilebilir) @0.6C deşarj akımı 1.75V/hücre (1.65V/hücre~1.8V/hücre arasında seçilebilir) @0.15C deşarj akımı (EOD gerilimi, deşarj akımına göre ayarlanan aralıkta doğrusal olarak değişir)
Akü Şarj	V/hücre	$2.4V/hücre (2.3V/hücre \sim 2.45V/hücre arasında seçilebilir)$ Sabit akım ve sabit gerilim şarj modu
Akü Şarj Gücü Maks. Akım	kW	%10*UPS kapasitesi (seçilebilir: %1~20*UPS kapasitesi)

6.4.2 Elektriksel Karakteristikler (Ara DC Link)

6.4.3 Elektriksel Karakteristikler (İnvertör Çıkışı)

•					
m 11 (7 I	· · · · ·	<u> </u>	(TZ '4'I	1	$1 \sim 1$
1 1 1 1 0 6 / 1	nvertor I	12101 /	K 11111	VUIVe	doornin
$1 a D O O^{-1}$		2101914	INTUR	vunu	uogiui

Öğe	Birim	Değer
Beyan kapasite	KVA	40-500kVA
Beyan AC gerilim	Vac	380/400/415 (Hattan hata)
Beyan Frekans	Hz	50/60
Frekans	Ц-7	50/60Hz+%0 1
Düzenlemesi	112	50/0011Z±/00.1
Gerilim hassasiyeti	%	$\pm 1.5(\%0$ ~100 doğrusal yük)
Aşırı yük	١	%110, 60 dk; %125, 10 dk; %150, 1 dk; >%150, 200 ms
Senkronize Aralık	Hz	Ayarlanabilir, ± 0.5 Hz $\sim \pm 5$ Hz, varsayılan ± 3 Hz
Senkronize Dönüş Hızı	Hz	Ayarlanabilir, 0.5Hz/S ~ 3Hz/S, varsayılan 0.5Hz/S
Çıkış Güç Faktörü	PF	0.9
Geçici Tepki	%	adım tipi yük için (%20 - %80 - %20) <%5
Geçici Toparlanma		adım tipi yük için (%0 - %100 - %0) <30 ms
Çıkış Gerilimi		%0 ila %100 doğrusal yükte <%1
THDu		IEC/EN62040-3'e göre <%6 tam doğrusal olmayan yük

6.4.4 Elektriksel Karakteristikler (By-pass Şebeke Girişi)

Öğe	Birim	2 yuvalı Kabin ve 4 yuvalı Kabin	6 yuvalı Kabin ve 10 yuvalı Kabin	
Beyan AC gerilim	Vac	380/400/415 (üç fazlı dört telli ve by-pass ile nötr paylaşım)		
Beyan Akım	А	91~758 (Tablo 3-2)		
Aşırı yük	%	%125, Uzun süreli çalışma, %110, Uzun süreli çalışma %125~%130, 10 dk için %110~%125, 5 dk için %130~%150, 1 dk için %125~%150, 1 dk için >%150, 300ms >%150,18		
Nötr kablonun akım değeri	A	1.7×In		
Beyan frekans	Hz	50/60		
Geçiş süresi (by-pass ve invertör arasında)	ms	Senkronize aktarım: 0ms		
By-pass gerilim aralığı	%	Ayarlanabilir, varsayılan -%20~+%15 Üst sınır: +%10, +%15, +%20, +%25 Alt sınır: -%10 -%15, -%20, -%30, -%40		
By-pass frekans aralığı	Hz	Ayarlanabilir: ± 1 Hz, ± 3 Hz, ± 5 Hz		
Senkronize Aralık	Hz	Ayarlanabilir, ±0.5Hz ~±5Hz, varsayılan ±3Hz		

Tablo 6-8 By-pass Şebeke Girişi

6.5 Verimlilik

Tablo 6-9 Verimlilik					
Öğe	Birim Değer				
	Genel verimlilik				
Normal mod (çift dönüşüm)	%	>96			
ECO Modu	%	>99			
Akü deşarj verimliliği (480Vdc nominal gerilimde ve tam beyan doğrusal yükte akü)					
Akü modu	%	>96			

6.6 Ekran ve Arabirim

Ekran	LED + LCD + Renkli dokunmatik ekran			
Arabirim	Standart:RS232, RS485, USB, Kuru Kontak Seçeneği: SNMP,AS/400			

AGKK14420 10/2021